Generalized Implicit Factorization Problem

Yansong Feng ${ }^{1}$ Abderrahmane Nitaj ${ }^{2}$ Yanbin Pan ${ }^{1}$
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China ysfeng2023@163.com, panyanbin@amss.ac.cn
Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France
abderrahmane.nitaj@unicaen.fr

December 24, 2023

Outline

1 Background

2 Generalized Implicit Factorization Problem

3 Numerical Experiments

4 Conclusion

Introduction to RSA

RSA has three steps:

Choose two prime p and q
Compute $N=p q$
Calculate $d=e^{-1}$ modulo $\phi(N)$ as private key

Introduction to RSA

RSA has three steps:

Alice

Choose two prime p and q
Compute $N=p q$
Calculate $d=e^{-1}$ modulo $\phi(N)$ as private key

Ciphertext C

Compute the ciphertext $C \equiv M^{e}(\bmod N)$

Introduction to RSA

RSA has three steps:

Alice

Choose two prime p and q
Compute $N=p q$
Calculate $d=e^{-1}$ modulo $\phi(N)$ as private key

Compute the plaintext message $M \equiv C^{d}(\bmod N)$

Attack on RSA

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.

Attack on RSA

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.
- Coppersmith's attack is a well-known attack on RSA.

Attack on RSA

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.

■ Coppersmith's attack is a well-known attack on RSA.

- For example, by using Coppersmith's method, one can factor a RSA moduli when half of the most significant bits of p are known.

Attack on RSA

- There exist some attack on RSA, such as Side-channel attack, Winner's attack, Coppersmith's attack and so on.

■ Coppersmith's attack is a well-known attack on RSA.

- For example, by using Coppersmith's method, one can factor a RSA moduli when half of the most significant bits of p are known.
- We will discuss Coppersmith's method later.

Introduction to the IFP

At PKC 2009, May and Ritzenhofen introduced the Implicit Factorization Problem (IFP).

Definition (May, Ritzenhofen [1])

Let $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$ be two different n-bit RSA moduli with αn-bit q_{i}. The Implicit Factorization Problem (IFP) is to factor N_{1} and N_{2} with some implicit hints.

IFP in the LSBs case

They proposed their result of IFP in the LSBs case, i.e., p_{1} and p_{2} share γn bits least significant bits.

p_{1}

p_{2}

IFP in the other case

In a follow-up work, Sarkar and Maitra [2] generalized the Implicit Factorization Problem to the case where the most significant bits (MSBs) or the middle bits.

Then at PKC 2010, Faugère et al. [3] improved the bounds to the case where the most significant bits (MSBs) or the middle bits.

IFP in the MSBs case

The IFP in the MSBs case means factoring N_{1} and N_{2} with the implicit hint that p_{1} and p_{2} share most significant bits.

p_{1}

p_{2}

IFP in the Middle case

IFP in the Middle case means the p_{i} 's are primes that all share γn bits from position t 1 to $\mathrm{t} 2=\mathrm{t} 1+\gamma n$.

p_{1}

p_{2}

Faugère et al. [3] show that N_{1} and N_{2} can be factored in polynomial time when p_{1} and p_{2} share at least $\gamma n>4 \alpha n+6$ bits.

IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization Problem by revealing the relations between the Approximate Common Divisor Problem (ACDP) and the Implicit Factorization Problem
1 the primes p_{1}, p_{2} share an amount of the least significant bits (LSBs);
2 the primes p_{1}, p_{2} share an amount of most significant bits (MSBs);
3 the primes p_{1}, p_{2} share both an amount of least significant bits and an amount of most significant bits.

IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization Problem by revealing the relations between the Approximate Common Divisor Problem (ACDP) and the Implicit Factorization Problem
1 the primes p_{1}, p_{2} share an amount of the least significant bits (LSBs);
2 the primes p_{1}, p_{2} share an amount of most significant bits (MSBs);
3 the primes p_{1}, p_{2} share both an amount of least significant bits and an amount of most significant bits.

In 2016, Lu et al. [5] presented a novel algorithm and improved the bounds for all the above three cases of the Implicit Factorization Problem.

Revisit the Middle case

In 2015, Peng et al. [6] revisited the Implicit Factorization Problem with shared middle bits and improved the bound.

The bound was further enhanced by Wang et al. [7] in 2018

p_{1}

p_{2}

Recent work on IFP

	LSBs	MSBs	both LSBs-MSBs	Middle bits	General
May, Ritzenhofen [1]	2α	-	-	-	-
Faugère, et al. [3]	2α	-	-	4α	-
Sarkar, Maitra [4]	$2 \alpha-\alpha^{2}$	$2 \alpha-\alpha^{2}$	$2 \alpha-\alpha^{2}$	-	-
Lu, et al. [5]	$2 \alpha-2 \alpha^{2}$	$2 \alpha-2 \alpha^{2}$	$2 \alpha-2 \alpha^{2}$	-	-
Peng, et al.[6]	-	-	-	$4 \alpha-3 \alpha^{2}$	-
Wang, et al.[7]	-	-	-	$4 \alpha(1-\sqrt{\alpha})$	-
This work	-	-	-	-	$4 \alpha(1-\sqrt{\alpha})$

Table: Asymptotic lower bound of γ in the Implicit Factorization Problem for n-bit $N_{1}=p_{1} q_{2}$ and $N_{2}=p_{2} q_{2}$ where the number of shared bits is $\gamma n, q_{1}$ and q_{2} are αn-bit.

1 Background

2 Generalized Implicit Factorization Problem

3 Numerical Experiments

4 Conclusion

GIFP

It can be seen in Table 1 that the positions for the sharing bits are located similarly. So we consider a general case that the positions for the sharing bits are located differently.

GIFP

It can be seen in Table 1 that the positions for the sharing bits are located similarly. So we consider a general case that the positions for the sharing bits are located differently.

Definition $(\operatorname{GIFP}(n, \alpha, \gamma))$

Given two n-bit RSA moduli $N_{1}=p_{1} q_{1}$ and $N_{2}=p_{2} q_{2}$, where q_{1} and q_{2} are αn-bit, assume that p_{1} and p_{2} share γn consecutive bits, where the shared bits may be located in different positions of p_{1} and p_{2}. The Generalized Implicit Factorization Problem (GIFP) asks to factor N_{1} and N_{2}.

GIFP

Theorem

$\operatorname{GIFP}(n, \alpha, \gamma)$ can be solved in polynomial time when

$$
\gamma>4 \alpha(1-\sqrt{\alpha}),
$$

provided that $\alpha+\gamma \leq 1$.

\mid shared bits: $M-1$
(a) p_{1}

\mid shared bits: $M-1$
(b) p_{2}

Figure: Shared bits M for p_{1} and p_{2}

Preliminaries

The proof of this theorem needs some knowledge of Lattice and Coppersmith's theory.
Let $m \geq 2$ be an integer. A lattice is a discrete additive subgroup of \mathbb{R}^{m}. A more explicit definition is presented as follows.

Preliminaries

The proof of this theorem needs some knowledge of Lattice and Coppersmith's theory.
Let $m \geq 2$ be an integer. A lattice is a discrete additive subgroup of \mathbb{R}^{m}. A more explicit definition is presented as follows.

Definition (Lattice)

Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}} \in \mathbb{R}^{m}$ be n linearly independent vectors with $n \leq m$. The lattice \mathcal{L} spanned by $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is the set of all integer linear combinations of $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$, i.e.,

$$
\mathcal{L}=\left\{\mathbf{v} \in \mathbb{R}^{m} \mid \mathbf{v}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{\mathbf{i}}, a_{i} \in \mathbb{Z}\right\}
$$

Lattice

The Shortest Vector Problem (SVP) is one of the famous computational problems in lattices.

Definition (Shortest Vector Problem (SVP))

Given a lattice \mathcal{L}, the Shortest Vector Problem (SVP) asks to find a non-zero lattice vector $\mathbf{v} \in \mathcal{L}$ of minimum Euclidean norm, i.e., find $\mathbf{v} \in \mathcal{L} \backslash\{\mathbf{0}\}$ such that $\|\mathbf{v}\| \leq\|\mathbf{w}\|$ for all non-zero $\mathbf{w} \in \mathcal{L}$.

LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist algorithms that can find a relatively short vector, instead of the exactly shortest vector, in polynomial time, such as the famous LLL algorithm proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result is useful for our analysis[10].

LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist algorithms that can find a relatively short vector, instead of the exactly shortest vector, in polynomial time, such as the famous LLL algorithm proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result is useful for our analysis[10].

Theorem (LLL Algorithm [9])

Given an n-dimensional lattice \mathcal{L}, we can find an LLL-reduced basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ of \mathcal{L} in polynomial time, which satisfies

$$
\left\|\mathbf{v}_{\mathbf{i}}\right\| \leq 2^{\frac{n(n-1)}{4(n+1-i)}} \operatorname{det}(\mathcal{L})^{\frac{1}{n+1-i}}, \quad \text { for } \quad i=1, \ldots, n
$$

Coppersmith's method

Theorem
 Let M be a positive integer, and $f\left(x_{1}, \ldots, x_{k}\right)$ be a polynomial with integer coefficients. Coppersmith's method give us a way to find a small solution $\left(y_{1}, \ldots, y_{k}\right)$ of the modular equation $f\left(x_{1}, \ldots, x_{k}\right) \equiv 0(\bmod M)$ with the bounds $y_{i}<X_{i}$ for $i=1, \ldots, k$.

Algorithm Overview

The algorithm to find small integer roots using Coppersmith's Theorem involves lattice reduction techniques.
1 Formulate the problem as a lattice problem.

Algorithm Overview

The algorithm to find small integer roots using Coppersmith's Theorem involves lattice reduction techniques.
1 Formulate the problem as a lattice problem.
2 Apply lattice reduction algorithms to find short lattice vectors.

Algorithm Overview

The algorithm to find small integer roots using Coppersmith's Theorem involves lattice reduction techniques.
1 Formulate the problem as a lattice problem.
2 Apply lattice reduction algorithms to find short lattice vectors.
3 Recover integer solutions from the lattice basis.

Coppersmith's method

More precisely,the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_{i}\left(y_{1}, \ldots, y_{k}\right) \equiv 0(\bmod M)$;

Coppersmith's method

More precisely,the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_{i}\left(y_{1}, \ldots, y_{k}\right) \equiv 0(\bmod M)$;
- use the coefficient vectors of $g_{i}\left(x_{1} X_{1}, \ldots, x_{k} X_{k}\right), i=1, \ldots, k$, to construct a k-dimensional lattice \mathcal{L};

Coppersmith's method

More precisely,the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_{i}\left(y_{1}, \ldots, y_{k}\right) \equiv 0(\bmod M)$;
- use the coefficient vectors of $g_{i}\left(x_{1} X_{1}, \ldots, x_{k} X_{k}\right), i=1, \ldots, k$, to construct a k-dimensional lattice \mathcal{L};
- Applying the LLL algorithm to \mathcal{L}, we get a new set H of k polynomial equations $h_{i}\left(x_{1}, \ldots, x_{k}\right), i=1, \ldots, k$, with integer coefficients such that $h_{i}\left(y_{1}, \ldots, y_{k}\right) \equiv 0(\bmod M)$;

Coppersmith's method

More precisely,the steps are as follows:

- Construct a set G of k-variate polynomial equations such that $g_{i}\left(y_{1}, \ldots, y_{k}\right) \equiv 0(\bmod M)$;
- use the coefficient vectors of $g_{i}\left(x_{1} X_{1}, \ldots, x_{k} X_{k}\right), i=1, \ldots, k$, to construct a k-dimensional lattice \mathcal{L};
- Applying the LLL algorithm to \mathcal{L}, we get a new set H of k polynomial equations $h_{i}\left(x_{1}, \ldots, x_{k}\right), i=1, \ldots, k$, with integer coefficients such that $h_{i}\left(y_{1}, \ldots, y_{k}\right) \equiv 0(\bmod M)$;
- One can get $h_{i}\left(y_{1}, \ldots, y_{k}\right)=0$ over the integers in some cases, where for $h\left(x_{1}, \ldots, x_{k}\right)=\sum_{i_{1} \ldots i_{k}} a_{i_{1} \ldots i_{k}} x_{1}^{i_{1}} \cdots x_{1}^{i_{k}}$

Proof of GIFP

Proof.

Hence, we suppose that p_{1} shares γn-bits from the $\beta_{1} n$-th bit to $\left(\beta_{1}+\gamma\right) n$-th bit, and p_{2} shares bits from $\beta_{2} n$-th bit to $\left(\beta_{2}+\gamma\right) n$-th bit, where β_{1} and β_{2} are known with $\beta_{1} \leq \beta_{2}$ (see Fig. 1). Then we can write

$$
p_{1}=x_{1}+M 2^{\beta_{1} n}+x_{2} 2^{\left(\beta_{1}+\gamma\right) n}, \quad p_{2}=x_{3}+M 2^{\beta_{2} n}+x_{4} 2^{\left(\beta_{2}+\gamma\right) n}
$$

(a) p_{1}

(b) p_{2}

Figure: Shared bits M for p_{1} and p_{2}

Proof of GIFP

Proof.

Next, we define the polynomial

$$
f(x, y, z)=x z+2^{\left(\beta_{2}+\gamma\right) n} y z+N_{2}
$$

which shows that $\left(x_{1} 2^{\left(\beta_{2}-\beta_{1}\right) n}-x_{3}, x_{2}-x_{4}, q_{2}\right)$ is a solutions of

$$
f(x, y, z) \equiv 0 \quad\left(\bmod 2^{\left(\beta_{2}-\beta_{1}\right) n} p_{1}\right) .
$$

Proof of GIFP

Proof.

To apply Coppersmith's method, we consider a family of polynomials $g_{i, j}(x, y, z)$ for $0 \leq i \leq m$ and $0 \leq j \leq m-i$:

$$
g_{i, j}(x, y, z)=(y z)^{j} f(x, y, z)^{i}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{m-i} N_{1}^{\max (t-i, 0)} .
$$

Proof of GIFP

Proof.

These polynomials satisfy

$$
\begin{aligned}
& g_{i, j}\left(x_{1} 2^{\left(\beta_{2}-\beta_{1}\right) n}-x_{3}, x_{2}-x_{4}, q_{2}\right) \\
& \quad=\left(x_{2}-x_{4}\right)^{j} q_{2}^{j}\left(2^{\left(\beta_{2}-\beta_{1}\right) n} p_{1} q_{2}\right)^{i}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{m-i} N_{1}^{\max (t-i, 0)} \\
& \quad \equiv 0 \quad\left(\bmod \left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{m} p_{1}^{t}\right)
\end{aligned}
$$

Trick

Proof.

To reduce the determinant of the lattice, we introduce a new variable w for p_{2}, and multiply the polynomials $g_{i, j}(x, y, z)$ by a power w^{s} for some s that will be optimized later.
Similar to t, we also require $0 \leq s \leq m$

Trick

Proof.

Note that we can replace $z w$ in $g_{i, j}(x, y, z) w^{s}$ by N_{2}.
We then eliminate $(z w)^{i}$ from the original polynomial by multiplying it by N_{2}^{-i}, while ensuring that the resulting polynomial evaluation is still a multiple of $\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{m} p_{1}^{t}$.
By selecting the appropriate parameter s, we aim to reduce the determinant of the lattice.

Trick

Proof.

For example, suppose $m=5$ and $t=2$, then

$$
\begin{aligned}
g_{1,2}(x, y, z) & =(y z)^{j} f(x, y, z)^{i}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{m-i} N_{1}^{\max (t-i, 0)} \\
& =(y z)^{2} f(x, y, z)^{1}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{5-1} N_{1}^{\max (2-1,0)} \\
& =(y z)^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1}
\end{aligned}
$$

Trick

Proof.

For example, suppose $m=5$ and $t=2$, then

$$
\begin{aligned}
g_{1,2}(x, y, z) & =(y z)^{j} f(x, y, z)^{i}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{m-i} N_{1}^{\max (t-i, 0)} \\
& =(y z)^{2} f(x, y, z)^{1}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{5-1} N_{1}^{\max (2-1,0)} \\
& =(y z)^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1}
\end{aligned}
$$

Suppose $s=2$, we multiply the polynomials $g_{1,2}(x, y, z)$ by a power $w^{s}=w^{2}$, then

$$
\widetilde{g}_{1,2}(x, y, z, w)=(y z)^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1} w^{2}
$$

Trick

Proof.

See that

$$
\begin{aligned}
\widetilde{g}_{1,2}(x, y, z, w) & =(y z)^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1} w^{2} \\
& =(z w)^{2} y^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1}
\end{aligned}
$$

Trick

Proof.

See that

$$
\begin{aligned}
\widetilde{g}_{1,2}(x, y, z, w) & =(y z)^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1} w^{2} \\
& =(z w)^{2} y^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1}
\end{aligned}
$$

We then eliminate $(z w)^{2}$ from the original polynomial by multiplying it by N_{2}^{-2}, i.e.,

$$
\begin{aligned}
\bar{g}_{1,2}(x, y, z, w) & =\widetilde{g}_{1,2}(x, y, z, w) * N_{2}^{-2} \\
& =(z w)^{2} y^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1} * N_{2}^{-2}
\end{aligned}
$$

Trick

Proof.

See that

$$
\begin{aligned}
\widetilde{g}_{1,2}(x, y, z, w) & =(y z)^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1} w^{2} \\
& =(z w)^{2} y^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1}
\end{aligned}
$$

We then eliminate $(z w)^{2}$ from the original polynomial by multiplying it by N_{2}^{-2}, i.e.,

$$
\begin{aligned}
\bar{g}_{1,2}(x, y, z, w) & =\widetilde{g}_{1,2}(x, y, z, w) * N_{2}^{-2} \\
& =(z w)^{2} y^{2} f(x, y, z)\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{4} N_{1} * N_{2}^{-2}
\end{aligned}
$$

For simplicity, the results $\bar{g}_{1,2}(x, y, z, w)$ are denoted as $g_{1,2}(x, y, z, w)$.

Proof of GIFP

Proof.

Consider the lattice \mathcal{L} spanned by the matrix \mathbf{B} whose rows are the coefficients of the polynomials $g_{i, j}(x, y, z, w)$ for $0 \leq i \leq m, 0 \leq j \leq m-i$.

Proof of GIFP

Proof.

Then

$$
\operatorname{det}(\mathcal{L})<\frac{1}{2^{\frac{\omega-1}{4}} \sqrt{\omega}}\left(2^{\left(\beta_{2}-\beta_{1}\right) n}\right)^{\omega m} p_{1}^{t \omega}
$$

The inequality implies

$$
\tau^{2}(3-\tau)-3(1-\alpha) \tau+\sigma^{3}-3 \alpha \sigma+1-\gamma+\alpha<0
$$

The left side is optimized for $\tau_{0}=1-\sqrt{\alpha}$ and $\sigma_{0}=\sqrt{\alpha}$, which gives

$$
\gamma>4 \alpha(1-\sqrt{\alpha}) .
$$

Proof of GIFP

Proof.

By Assumption 1, we can get $\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{1} 2^{\left(\beta_{2}-\beta_{1}\right) n}-x_{3}, x_{2}-x_{4}, q_{2}\right)$, so we have $q_{2}=z_{0}$, and we calculate

$$
p_{2}=\frac{N_{2}}{q_{2}} .
$$

Proof of GIFP

Proof.

Next, we have

$$
2^{\left(\beta_{2}-\beta_{1}\right) n} p_{1}=p_{2}+\left(x_{1} 2^{\left(\beta_{2}-\beta_{1}\right) n}-x_{3}\right)+\left(x_{2}-x_{4}\right) 2^{\left(\beta_{2}+\gamma\right) n}=p_{2}+y_{0}+z_{0} 2^{\left(\beta_{2}+\gamma\right) n} .
$$

Therefore, we can calculate p_{1} and $q_{1}=\frac{N_{1}}{p_{1}}$. This terminates the proof.

1 Background

2 Generalized Implicit Factorization Problem

3 Numerical Experiments

4 Conclusion

Assumption

We used a famous assumption that has been mentioned in all previous work. In order to make our results more convincing, we also conducted some experiments

Assumption

We used a famous assumption that has been mentioned in all previous work. In order to make our results more convincing, we also conducted some experiments

Assumption

The k polynomials $h_{i}\left(x_{1}, \cdots, x_{k}\right), i=1, \cdots, k$, that are derived from the reduced basis of the lattice in the Coppersmith method are algebraically independent. Equivalently, the common root of the polynomials $h_{i}\left(x_{1}, \cdots, x_{k}\right)$ can be found by computing the resultant or computing the Gröbner basis.

Numerical results

The experiments were run on a computer configured with AMD Ryzen 5 2500 U with Radeon Vega Mobile Gfx (2.00 GHz).

n	αn	βn	$\beta_{1} n$	$\beta_{2} n$	γn	m	$\operatorname{dim}(\mathcal{L})$	Time for LLL (s)	Time for Gröbner Basis (s)
200	20	40	20	30	140	6	28	1.8620	0.0033
200	20	60	20	30	140	6	28	1.8046	0.0034
500	50	100	50	75	350	6	28	3.1158	0.0043
500	50	150	50	75	300	6	28	4.23898	0.0048
1000	100	200	100	150	700	6	28	8.2277	0.0147

Table: Some experimental results for the GIFP.

1 Background

2 Generalized Implicit Factorization Problem

3 Numerical Experiments

4 Conclusion

Summary

In this paper, we considered the Generalized Implicit Factoring Problem (GIFP), where the shared bits are not necessarily required to be located at the same positions.

We proposed a lattice-based algorithm for this problem.

Open problem

Can we improve the bound $4 \alpha(1-\sqrt{\alpha})$ to $2 \alpha(1-\alpha) \boldsymbol{?}$

Reference I

[1] Alexander May and Maike Ritzenhofen. "Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint". In: Public Key Cryptography - PKC 2009, 12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings. Ed. by Stanislaw Jarecki and Gene Tsudik. Vol. 5443. Lecture Notes in Computer Science. Springer, 2009, pp. 1-14. Doi: 10.1007/978-3-642-00468-1 _1. URL: https://doi.org/10.1007/978-3-642-00468-1_1.
[2] Santanu Sarkar and Subhamoy Maitra. "Further results on implicit factoring in polynomial time". In: Adv. Math. Commun. 3.2 (2009), pp. 205-217. DOI: $10.3934 / a m c .2009 .3 .205$. URL:
https://doi.org/10.3934/amc.2009.3.205.

Reference II

[3] Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault. "Implicit Factoring with Shared Most Significant and Middle Bits". In: Public Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings. Ed. by Phong Q. Nguyen and David Pointcheval. Vol. 6056. Lecture Notes in Computer Science. Springer, 2010, pp. 70-87. DOI: 10.1007/978-3-642-13013-7_5. URL: https://doi.org/10.1007/978-3-642-13013-7_5.
[4] Santanu Sarkar and Subhamoy Maitra. "Approximate Integer Common Divisor Problem Relates to Implicit Factorization". In: IEEE Trans. Inf. Theory 57.6 (2011), pp. 4002-4013. Doi: 10.1109/TIT.2011.2137270. URL:
https://doi.org/10.1109/TIT.2011.2137270.

Reference III

[5] Yao Lu et al. "Towards optimal bounds for implicit factorization problem". In: International Conference on Selected Areas in Cryptography. Springer. 2016, pp. 462-476.
[6] Liqiang Peng et al. "Implicit Factorization of RSA Moduli Revisited (Short Paper)". In: Advances in Information and Computer Security 10th International Workshop on Security, IWSEC 2015, Nara, Japan, August 26-28, 2015, Proceedings. Ed. by Keisuke Tanaka and Yuji Suga. Vol. 9241. Lecture Notes in Computer Science. Springer, 2015, pp. 67-76. Doi: 10.1007/978-3-319-22425-1_5. URL: https://doi.org/10.1007/978-3-319-22425-1_5.

Reference IV

[7] Shixiong Wang et al. "A better bound for implicit factorization problem with shared middle bits". In: Sci. China Inf. Sci. 61.3 (2018), 032109:1-032109:10. DOI: $10.1007 /$ s11432-017-9176-5. URL: https://doi.org/10.1007/s11432-017-9176-5.
[8] Miklós Ajtai. "The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract)". In: Symposium on the Theory of Computing. 1998.
[9] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. "Factoring polynomials with rational coefficients". In: Mathematische annalen 261.ARTICLE (1982), pp. 515-534.

Reference V

[10] Alexander May. "New RSA vulnerabilities using lattice reduction methods". PhD thesis. University of Paderborn, 2003. URL: http://ubdata.unipaderborn.de/ediss/17/2003/may/disserta.pdf.

Thank you!

