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Attack on RSA

There exist some attack on RSA, such as Side-channel attack,

Winner’s attack, Coppersmith’s attack and so on.

Coppersmith’s attack is a well-known attack on RSA.

For example, by using Coppersmith’s method, one can factor a RSA

moduli when half of the most significant bits of p are known.

We will discuss Coppersmith’s method later.
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Introduction to the IFP

At PKC 2009, May and Ritzenhofen introduced the Implicit Factorization

Problem (IFP).

Definition (May, Ritzenhofen [1])

Let N1 = p1q1 and N2 = p2q2 be two different n-bit RSA moduli with

αn-bit qi. The Implicit Factorization Problem (IFP) is to factor N1 and N2

with some implicit hints.
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IFP in the LSBs case

They proposed their result of IFP in the LSBs case, i.e., p1 and p2 share γn

bits least significant bits.
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IFP in the other case

In a follow-up work, Sarkar and Maitra [2] generalized the Implicit

Factorization Problem to the case where the most significant bits (MSBs) or

the middle bits.

Then at PKC 2010, Faugère et al. [3] improved the bounds to the case

where the most significant bits (MSBs) or the middle bits.
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IFP in the MSBs case

The IFP in the MSBs case means factoring N1 and N2 with the implicit

hint that p1 and p2 share most significant bits.
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IFP in the Middle case

IFP in the Middle case means the pi’s are primes that all share γn bits from

position t1 to t2 = t1 + γn.

Faugère et al. [3] show that N1 and N2 can be factored in polynomial time

when p1 and p2 share at least γn > 4αn+ 6 bits.
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IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization

Problem by revealing the relations between the Approximate Common

Divisor Problem (ACDP) and the Implicit Factorization Problem

1 the primes p1, p2 share an amount of the least significant bits (LSBs);

2 the primes p1, p2 share an amount of most significant bits (MSBs);

3 the primes p1, p2 share both an amount of least significant bits and an

amount of most significant bits.
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IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization

Problem by revealing the relations between the Approximate Common

Divisor Problem (ACDP) and the Implicit Factorization Problem

1 the primes p1, p2 share an amount of the least significant bits (LSBs);

2 the primes p1, p2 share an amount of most significant bits (MSBs);

3 the primes p1, p2 share both an amount of least significant bits and an

amount of most significant bits.

In 2016, Lu et al. [5] presented a novel algorithm and improved the bounds

for all the above three cases of the Implicit Factorization Problem.
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Revisit the Middle case

In 2015, Peng et al. [6] revisited the Implicit Factorization Problem with

shared middle bits and improved the bound.

The bound was further enhanced by Wang et al. [7] in 2018
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Recent work on IFP

LSBs MSBs both LSBs-MSBs Middle bits General

May, Ritzenhofen [1] 2α - - - -

Faugère, et al. [3] 2α - - 4α -

Sarkar, Maitra [4] 2α− α2 2α− α2 2α− α2 - -

Lu, et al. [5] 2α− 2α2 2α− 2α2 2α− 2α2 - -

Peng, et al.[6] - - - 4α− 3α2 -

Wang, et al.[7] - - - 4α(1−
√
α) -

This work - - - - 4α(1−
√
α)

Table: Asymptotic lower bound of γ in the Implicit Factorization Problem for n-bit

N1 = p1q2 and N2 = p2q2 where the number of shared bits is γn, q1 and q2 are

αn-bit.
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GIFP

It can be seen in Table 1 that the positions for the sharing bits are located

similarly. So we consider a general case that the positions for the sharing

bits are located differently.
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GIFP

It can be seen in Table 1 that the positions for the sharing bits are located

similarly. So we consider a general case that the positions for the sharing

bits are located differently.

Definition (GIFP(n, α, γ))

Given two n-bit RSA moduli N1 = p1q1 and N2 = p2q2, where q1 and q2 are

αn-bit, assume that p1 and p2 share γn consecutive bits, where the shared

bits may be located in different positions of p1 and p2. The Generalized

Implicit Factorization Problem (GIFP) asks to factor N1 and N2.
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GIFP

Theorem

GIFP(n, α, γ) can be solved in polynomial time when

γ > 4α
(
1−

√
α
)
,

provided that α+ γ ≤ 1.

(a) p1 (b) p2

Figure: Shared bits M for p1 and p2
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Preliminaries

The proof of this theorem needs some knowledge of Lattice and

Coppersmith’s theory.

Let m ≥ 2 be an integer. A lattice is a discrete additive subgroup of Rm. A

more explicit definition is presented as follows.

Yansong Feng Academy of Mathematics and Systems Science

Generalized Implicit Factorization Problem



Background GIFP Experiments Conclusion References

Preliminaries

The proof of this theorem needs some knowledge of Lattice and

Coppersmith’s theory.

Let m ≥ 2 be an integer. A lattice is a discrete additive subgroup of Rm. A

more explicit definition is presented as follows.

Definition (Lattice)

Let v1,v2, . . . ,vn ∈ Rm be n linearly independent vectors with n ≤ m.

The lattice L spanned by {v1,v2, . . . ,vn} is the set of all integer linear

combinations of {v1,v2, . . . ,vn}, i.e.,

L =

{
v ∈ Rm | v =

n∑
i=1

aivi, ai ∈ Z

}
.
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Lattice

The Shortest Vector Problem (SVP) is one of the famous computational

problems in lattices.

Definition (Shortest Vector Problem (SVP))

Given a lattice L, the Shortest Vector Problem (SVP) asks to find a

non-zero lattice vector v ∈ L of minimum Euclidean norm, i.e., find

v ∈ L\{0} such that ∥v∥ ≤ ∥w∥ for all non-zero w ∈ L.
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LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist

algorithms that can find a relatively short vector, instead of the exactly

shortest vector, in polynomial time, such as the famous LLL algorithm

proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result

is useful for our analysis[10].
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LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist

algorithms that can find a relatively short vector, instead of the exactly

shortest vector, in polynomial time, such as the famous LLL algorithm

proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result

is useful for our analysis[10].

Theorem (LLL Algorithm [9])

Given an n-dimensional lattice L, we can find an LLL-reduced basis

{v1,v2, . . . ,vn} of L in polynomial time, which satisfies

∥vi∥ ≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i , for i = 1, . . . , n.
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Coppersmith’s method

Theorem

Let M be a positive integer, and f(x1, . . . , xk) be a polynomial with integer

coefficients. Coppersmith’s method give us a way to find a small solution

(y1, . . . , yk) of the modular equation f(x1, . . . , xk) ≡ 0 (mod M) with the

bounds yi < Xi for i = 1, . . . , k.
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Algorithm Overview

The algorithm to find small integer roots using Coppersmith’s Theorem

involves lattice reduction techniques.

1 Formulate the problem as a lattice problem.

2 Apply lattice reduction algorithms to find short lattice vectors.

3 Recover integer solutions from the lattice basis.
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Coppersmith’s method

More precisely,the steps are as follows:

Construct a set G of k-variate polynomial equations such that

gi(y1, . . . , yk) ≡ 0 (mod M);

use the coefficient vectors of gi(x1X1, . . . , xkXk), i = 1, . . . , k, to

construct a k-dimensional lattice L;
Applying the LLL algorithm to L, we get a new set H of k polynomial

equations hi(x1, . . . , xk), i = 1, . . . , k, with integer coefficients such

that hi(y1, . . . , yk) ≡ 0 (mod M);

One can get hi(y1, . . . , yk) = 0 over the integers in some cases, where

for h(x1, . . . , xk) =
∑

i1...ik
ai1...ikx

i1
1 · · ·xik

1
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Proof of GIFP

Proof.

Hence, we suppose that p1 shares γn-bits from the β1n-th bit to

(β1 + γ)n-th bit, and p2 shares bits from β2n-th bit to (β2 + γ)n-th bit,

where β1 and β2 are known with β1 ≤ β2 (see Fig. 1 ). Then we can write

p1 = x1 +M2β1n + x22
(β1+γ)n, p2 = x3 +M2β2n + x42

(β2+γ)n,

(a) p1 (b) p2

Figure: Shared bits M for p1 and p2

Yansong Feng Academy of Mathematics and Systems Science

Generalized Implicit Factorization Problem



Background GIFP Experiments Conclusion References

Proof of GIFP

Proof.

Next, we define the polynomial

f(x, y, z) = xz + 2(β2+γ)nyz +N2,

which shows that (x12
(β2−β1)n − x3, x2 − x4, q2) is a solutions of

f(x, y, z) ≡ 0 (mod 2(β2−β1)np1).
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Proof of GIFP

Proof.

To apply Coppersmith’s method, we consider a family of polynomials

gi,j(x, y, z) for 0 ≤ i ≤ m and 0 ≤ j ≤ m− i:

gi,j(x, y, z) = (yz)jf(x, y, z)i
(
2(β2−β1)n

)m−i

N
max(t−i,0)
1 .
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Proof of GIFP

Proof.

These polynomials satisfy

gi,j

(
x12

(β2−β1)n − x3, x2 − x4, q2

)
= (x2 − x4)

jqj2

(
2(β2−β1)np1q2

)i (
2(β2−β1)n

)m−i

N
max(t−i,0)
1

≡ 0 (mod
(
2(β2−β1)n

)m

pt1).
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Trick

Proof.

To reduce the determinant of the lattice, we introduce a new variable w for

p2, and multiply the polynomials gi,j(x, y, z) by a power ws for some s that

will be optimized later.

Similar to t, we also require 0 ≤ s ≤ m
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Trick

Proof.

Note that we can replace zw in gi,j(x, y, z)w
s by N2.

We then eliminate (zw)i from the original polynomial by multiplying it by

N−i
2 , while ensuring that the resulting polynomial evaluation is still a

multiple of
(
2(β2−β1)n

)m
pt1.

By selecting the appropriate parameter s, we aim to reduce the determinant

of the lattice.
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Trick

Proof.

For example, suppose m = 5 and t = 2, then

g1,2(x, y, z) =(yz)jf(x, y, z)i
(
2(β2−β1)n

)m−i

N
max(t−i,0)
1

=(yz)2f(x, y, z)1
(
2(β2−β1)n

)5−1

N
max(2−1,0)
1

=(yz)2f(x, y, z)
(
2(β2−β1)n

)4

N1
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Trick

Proof.

For example, suppose m = 5 and t = 2, then

g1,2(x, y, z) =(yz)jf(x, y, z)i
(
2(β2−β1)n

)m−i

N
max(t−i,0)
1

=(yz)2f(x, y, z)1
(
2(β2−β1)n

)5−1

N
max(2−1,0)
1

=(yz)2f(x, y, z)
(
2(β2−β1)n

)4

N1

Suppose s = 2, we multiply the polynomials g1,2(x, y, z) by a power

ws = w2, then

g̃1,2(x, y, z, w) = (yz)2f(x, y, z)
(
2(β2−β1)n

)4

N1w
2
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Trick

Proof.

See that

g̃1,2(x, y, z, w) =(yz)2f(x, y, z)
(
2(β2−β1)n

)4

N1w
2

=(zw)2y2f(x, y, z)
(
2(β2−β1)n

)4

N1
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Trick

Proof.

See that

g̃1,2(x, y, z, w) =(yz)2f(x, y, z)
(
2(β2−β1)n

)4

N1w
2

=(zw)2y2f(x, y, z)
(
2(β2−β1)n

)4

N1

We then eliminate (zw)2 from the original polynomial by multiplying it by

N−2
2 , i.e.,

g1,2(x, y, z, w) =g̃1,2(x, y, z, w) ∗N−2
2

=(zw)2y2f(x, y, z)
(
2(β2−β1)n

)4

N1 ∗N−2
2
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Trick

Proof.

See that

g̃1,2(x, y, z, w) =(yz)2f(x, y, z)
(
2(β2−β1)n

)4

N1w
2

=(zw)2y2f(x, y, z)
(
2(β2−β1)n

)4

N1

We then eliminate (zw)2 from the original polynomial by multiplying it by

N−2
2 , i.e.,

g1,2(x, y, z, w) =g̃1,2(x, y, z, w) ∗N−2
2

=(zw)2y2f(x, y, z)
(
2(β2−β1)n

)4

N1 ∗N−2
2

For simplicity, the results g1,2(x, y, z, w) are denoted as g1,2(x, y, z, w).
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Proof of GIFP

Proof.

Consider the lattice L spanned by the matrix B whose rows are the

coefficients of the polynomials gi,j(x, y, z, w) for 0 ≤ i ≤ m, 0 ≤ j ≤ m− i.
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Proof of GIFP

Proof.

Then

det(L) < 1

2
ω−1

4
√
ω

(
2(β2−β1)n

)ωm

ptω1 ,

The inequality implies

τ2(3− τ)− 3(1− α)τ + σ3 − 3ασ + 1− γ + α < 0.

The left side is optimized for τ0 = 1−
√
α and σ0 =

√
α, which gives

γ > 4α
(
1−

√
α
)
.
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Proof of GIFP

Proof.

By Assumption 1, we can get (x0, y0, z0) = (x12
(β2−β1)n − x3, x2 − x4, q2),

so we have q2 = z0, and we calculate

p2 =
N2

q2
.
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Proof of GIFP

Proof.

Next, we have

2(β2−β1)np1 = p2+(x12
(β2−β1)n−x3)+(x2−x4)2

(β2+γ)n = p2+y0+z02
(β2+γ)n.

Therefore, we can calculate p1 and q1 = N1

p1
. This terminates the proof.
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Assumption

We used a famous assumption that has been mentioned in all previous work.

In order to make our results more convincing, we also conducted some

experiments
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Assumption

We used a famous assumption that has been mentioned in all previous work.

In order to make our results more convincing, we also conducted some

experiments

Assumption

The k polynomials hi(x1, · · · , xk), i = 1, · · · , k, that are derived from the

reduced basis of the lattice in the Coppersmith method are algebraically

independent. Equivalently, the common root of the polynomials

hi(x1, · · · , xk) can be found by computing the resultant or computing the

Gröbner basis.
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Numerical results

The experiments were run on a computer configured with AMD Ryzen 5

2500U with Radeon Vega Mobile Gfx (2.00 GHz).

n αn βn β1n β2n γn m dim(L) Time for LLL (s) Time for Gröbner Basis (s)

200 20 40 20 30 140 6 28 1.8620 0.0033

200 20 60 20 30 140 6 28 1.8046 0.0034

500 50 100 50 75 350 6 28 3.1158 0.0043

500 50 150 50 75 300 6 28 4.23898 0.0048

1000 100 200 100 150 700 6 28 8.2277 0.0147

Table: Some experimental results for the GIFP.
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Summary

In this paper, we considered the Generalized Implicit Factoring Problem

(GIFP), where the shared bits are not necessarily required to be located at

the same positions.

We proposed a lattice-based algorithm for this problem.
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Open problem

Can we improve the bound 4α (1−
√
α) to 2α (1− α)?

Yansong Feng Academy of Mathematics and Systems Science

Generalized Implicit Factorization Problem



Background GIFP Experiments Conclusion References

Reference I

[1] Alexander May and Maike Ritzenhofen. “Implicit Factoring: On

Polynomial Time Factoring Given Only an Implicit Hint”. In: Public

Key Cryptography - PKC 2009, 12th International Conference on

Practice and Theory in Public Key Cryptography, Irvine, CA, USA,

March 18-20, 2009. Proceedings. Ed. by Stanislaw Jarecki and

Gene Tsudik. Vol. 5443. Lecture Notes in Computer Science.

Springer, 2009, pp. 1–14. doi: 10.1007/978-3-642-00468-1\_1.

url: https://doi.org/10.1007/978-3-642-00468-1%5C_1.

[2] Santanu Sarkar and Subhamoy Maitra. “Further results on implicit

factoring in polynomial time”. In: Adv. Math. Commun. 3.2 (2009),

pp. 205–217. doi: 10.3934/amc.2009.3.205. url:

https://doi.org/10.3934/amc.2009.3.205.

Yansong Feng Academy of Mathematics and Systems Science

Generalized Implicit Factorization Problem

https://doi.org/10.1007/978-3-642-00468-1\_1
https://doi.org/10.1007/978-3-642-00468-1%5C_1
https://doi.org/10.3934/amc.2009.3.205
https://doi.org/10.3934/amc.2009.3.205


Background GIFP Experiments Conclusion References

Reference II

[3] Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault.
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