Solving Modular Linear Equations via Automated Coppersmith and its Applications

¹Academy of Mathematics and Systems Science, Chinese Academy of Sciences

² School of Cyber Science and Technology, Hubei University

3 Normandie University

December 14, Inscrypt 2024

Yansong Feng¹ **Zhen Liu**² Abderrahmane Nitaj³ Yanbin Pan

- Background
- Lattice-based Cryptanalysis: Coppersmith's method
- Our Results
 - Implicit Factorization Problem

Background

RSA Cryptosystem $ed \equiv 1 \text{ m}$

Secret Key: $(\phi(N), d)$

Eve wants to get the SECRET KEY!!!

 $ed \equiv 1 \mod \phi(N) \quad \phi(N) = (p-1)(q-1)$

Lucky Eva got enough MSBs of p...

Now he just needs to solve a linear polynomial equation:

???U

- $f(x) = x + C \equiv 0 \mod p$ with a small root $x_0 = \widetilde{p} < N^{\frac{1}{4}}$

How to solve polynomials equations with small roots?

Coppersmith's method

Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n} \in \mathbb{R}^m$, the lattice \mathscr{L} is $\mathscr{L} = \left\{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = \sum_{i=1}^n \right\}$ Given bounds X_1, \dots, X_k and $f_1, \dots, f_n \in \mathbb{Z}$ the small root $\mathbf{u} = (u_1, \dots, u_k)$ with $|u_i| < \mathbf{u}_i$ Generate shift-polynomials $g_{[i_1,\dots,i_n,j_1,\dots,j_n]}$

- have the root \mathbf{u} module M^m , for some m
- Use the coefficient vector of $g_{[i_1,\dots,i_n,j_1,\dots,j_k]}(x_1X_1,\dots,x_kX_k)$ to construct \mathscr{L} . 2.

3. Use Lattice Reduction (LLL) to find shorter vectors h_1, \ldots, h_k $h_i(\mathbf{u}) \equiv 0 \mod M^m \longrightarrow h_i(\mathbf{u}) = 0 \text{ over } \mathbb{Z}$

$$\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}, a_{i} \in \mathbb{Z}$$

$$X_{i}[x_{1}, \dots, x_{k}] \text{ and modulus } M, \text{ the goal is to find}$$

$$X_{j}, \text{ such that } f_{i}(\mathbf{u}) \equiv 0 \mod M, 1 \leq i \leq n.$$

$$M_{jk}[x_{1}] = f_{1}^{i_{1}} \cdot \ldots \cdot f_{n}^{i_{n}} \cdot x_{1}^{j_{1}} \cdot \ldots \cdot x_{k}^{j_{k}} \cdot M^{m-(i_{1}+\dots+i_{n})}$$

$$M.$$

Crucial Condition: \mathscr{L} MUST satisfied det $(\mathscr{L}) < M^{m \dim(\mathscr{L})}$.

x ⁰	x^1	<i>x</i> ²	<i>x</i> ³	x^4	x^5	x^6	<i>x</i> ⁷	x^{8}	I
N^4	0	0	0	0	0	0	0	0	
*	N^3X	0	0	0	0	0	0	0	
*	*	$N^2 X^2$	0	0	0	0	0	0	
*	*	*	NX^3	0	0	0	0	0	
*	*	*	*	X^4	0	0	0	0	
*	*	*	*	*	X^5	0	0	0	
*	*	*	*	*	*	X^6	0	0	
*	*	*	*	*	*	*	X^7	0	
*	*	*	*	*	*	*	*	X^8	

Lower triangular

Example: $f(x) = x + C \equiv 0 \mod p$ with a small root $x_0 = \tilde{p} < N^{\frac{1}{4}}$

$\dim(\mathscr{L}) = m + o(m)$ $\det(\mathscr{L}) = N^{\frac{1}{8}m^2 + o(m^2)} X^{\frac{1}{2}m^2 + o(m^2)}$

 $X < N^{\frac{1}{4}} \rightarrow \det(\mathscr{L}) < p^{m\dim(\mathscr{L})} \rightarrow f$ can be solved with Coppersmith's method.

Using Coppersmith's method, compute $dim(\mathscr{L})$ and $det(\mathscr{L})$:

Manual Calculation such as calculating

Theorem: $dim(\mathscr{L})$ and $det(\mathscr{L})$ are polynomials in m.

Now, Manual Calculation — Lagrange Interpolation

$$\sum_{k=0}^{m} \sum_{i=k}^{m} (i - \min(s, i))? \text{ NO!}$$

Automated Coppersmith's method

At Asiacrypt'23, Meers and Nowakowski introduced a new automated method called Automated Coppersmith.

• Shift-polynomials $\frac{\lambda}{LM(f_1)^{i_1} \cdot \ldots \cdot LM(f_n)^{i_n}}$

- An element of \mathscr{M} is related to a unique element of \mathscr{F}
- \bullet

First determine the elements of the diagonal of the matrix (denote by *M*) of the lattice \mathscr{L} and then select a suitable subset \mathscr{F} of shift-polynomials to construct the lattice \mathscr{L}

$$-f_1^{i_1}\cdot\ldots\cdot f_n^{i_n}\cdot M^{m-(i_1+\cdots+i_n)}, \lambda\in\mathscr{M}$$

Given a single shift-polynomial, a locally optimal \mathcal{F} can be constructed automatically

Coefficient of Leading monomial of the polynomial in \mathcal{F}

Automated Coppersmith's method

Use polynomial interpolation to derive bounds X_1, \dots, X_k automatically • A sequence of sets $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots$, for any fixed \mathcal{M}_i and $m_i := i \cdot n - a$ corresponding optimal set of shift-polynomials \mathcal{F}_i .

$$\mathcal{M}_{i} := \bigcup_{0 \le j_{1}, \dots, j_{n} \le i} \operatorname{supp} \{f_{1}^{j_{1}} \cdot \dots \cdot f_{n}^{j_{n}}\}, \text{ for } i \in \mathbb{N}.$$

$$\circ \prod_{\lambda \in \mathcal{M}_{i}} \lambda(X_{1}, \dots, X_{k}) \cdot \prod_{\lambda \in \mathcal{M}_{i}} |\operatorname{LC}(\mathcal{F}_{i}[\lambda])| \le M^{(m_{i}-k)|\mathcal{M}|}.$$

$$M^{(m_{i}-k)|\mathcal{M}_{i}|} = M^{p_{\mathcal{M}}(m_{i})},$$

polynomial
interpolation
$$\prod_{\lambda \in \mathcal{M}_i} \lambda(X_1, \dots, X_k) = X_1^{p_1(m_i)} \cdot \dots \cdot X_k^{p_k(m_i)}$$

 $P_{\mathcal{M}}, P_1, \cdots, P_k, P_{\mathcal{F}_i}$ are polynomials of d

 $\Rightarrow X_1^{\alpha_1} \cdots X_k^{\alpha_k} \le M^{\delta - \epsilon}$

(monomials set)

$$|LC(\mathcal{F}_{i}[\lambda])| = M^{p_{\mathcal{F}_{i}}(m_{i})}$$
 (heuristic)
legree $k + 1$.

Our Results

For linear equations $f_1, \dots, f_n \in \mathbb{Z}[x_1, \dots, x_k]$, $\deg(f_i)=1$. we want to solve $f_i \equiv 0 \mod \hat{M_1} * M_2$, $1 \leq i \leq n$. $f_i \equiv 0 \mod \hat{M_1} * M_2 \Rightarrow f_i \equiv 0 \mod M_1 * M_2, 1 \le i \le n?$

- where $\hat{M_1}$ is an unknown, M_2 is known, M_1 is a known multiple of $\hat{M_1}$

Our results

 Better monomials set (better bound **Non-Homogenous linear equations:** there exists i_0 such that $f_{i_0}(0) \neq 0$

$$\mathcal{M}_i := \{\lambda \mid \lambda \in \operatorname{supp}\{f_1^{j_1} \cdot \ldots \cdot f_n^{j_n}\}, j_1 + \ldots + j_n \leq n \cdot i\}$$

Homogenous linear equations:

$$\mathcal{M}_i := \{\lambda \mid \lambda \in \operatorname{supp}\{f_1^{j_1} \cdot \ldots \cdot f_n^{j_n}\}, j_1 + \ldots + j_n = n \cdot i\}$$

• Introduce a new parameter t to consider shift polynomials

$$\overline{LM(f_1)^{i_1}\cdot\ldots\cdot LM(f_n)^{i_n}}f_1^{i_1}$$

- Need to ensure: $\prod \lambda(X_1, ..., X_k) \cdot \prod$ $\lambda \in \mathcal{M}_i$ $\lambda \in \mathcal{M}$
 - Heuristic: (proven to be true)

ds on
$$X_1, \cdots, X_k$$
)

$$f_n^{i_n} \cdot M_1^{\max\{t - (i_1 + \dots + i_n), 0\}} M_2^{m_i - (i_1 + \dots + i_n)}, \ \lambda \in \mathcal{M}_i$$

$$\left[\left| LC(\mathcal{F}_{i}[\lambda]) \right| \leq M^{(m_{i}-k)|\mathcal{M}_{i}|} \right]$$

$$\prod_{\lambda \in \mathcal{M}_i} |\operatorname{LC}(\mathcal{F}_i[\lambda])| = M_1^{p_{\mathcal{F}_1}(t,m_i)} \cdot (M_2)^{p_{\mathcal{F}_2}(m_i)}$$

Implicit Factorization Problem

IFP (MSBs case)

p_1 share the same MSBs with p_2

$N_1 = p_1 q_1$ and $N_2 = p_2 q_2$

$N_1 + (p_2 - p_1)q_1 = p_2q_1 \equiv 0 \mod p_2$

Solving $f(x_1, x_2) = x_1x_2 + N_1 \equiv 0 \mod p_2$

IFP (LSBs case)

IFP (Middle case)

IFP (Generalized case)

How about EIFP with Generalized case? G-EIFP!

 a_1p_1 share some continuous bits with a_2p_2 , which can be located in different positions.

 $a_1 p_1$

 $a_2 p_2$

Definition: Given two *n*-bit RSA moduli $N_1 = p_1q_1$ and $N_2 = p_2q_2$, where q_1 and q_2 are αn -bit, suppose that there exist two positive integers a_1 and a_2 with $a_1, a_2 < 2^{\delta n}$ such that a_1p_1 and a_2p_2 share γn bits, where the shared bits may be located in different positions of a_1p_1 and a_2p_2 . The Generalized Extended Implicit Factorization Problem (G-EIFP) asks to factor N_1 and N_2 .

 a_2p_2 shares bits from β_2n -th bit to $(\beta_2 + \gamma)n$ -th bit, where β_1 and β_2 are known with $\beta_1 \leq \beta_2$.

- $a_1p_1 = x_1 + 2^{\beta_1 n}R + x_2 2^{(\beta_1 + \gamma)n}$ $a_2p_2 = x_3 + 2^{\beta_2 n}R + x_4 2^{(\beta_2 + \gamma)n}$
- $f(x, y, z) = x + ay + N_2 x$ with $a = 2^{(\beta_2 + \gamma)n}$,

where $(x_0, y_0, z_0) = (2^{(\beta_2 - \beta_1)n} x_1 q_2 - x_3 q_2, x_2 q_2 - x_4 q_2, a_2)$ is a solution of the modular equation $f(x, y, z) \equiv 0 \pmod{2^{(\beta_2 - \beta_1)n} p_1}$.

suppose that a_1p_1 shares γn -bits from the $\beta_1 n$ bit to $(\beta_1 + \gamma)n$ -th bit, and

 $a_1 p_1$

— shared bits: *M* —

Since
$$gcd(x_0, y_0, N_2) = q_2$$
, introduce w as a new variable
 $f(x, y, z, w) = x + ay + wz$,
where $(x_0, y_0, z_0, w_0) = (2^{(\beta_2 - \beta_1)n}x_1 - x_3, x_2 - x_4, a_2, p_2)$
modular equation $f(x, y, z, w) \equiv 0 \pmod{2^{(\beta_2 - \beta_1)n}p_1}$.
We want to solve $f \equiv 0 \mod 2^{(\beta_2 - \beta_1)n}p_1$, where p_1 is al
• Choose $\mathcal{M}_i := \{\lambda \mid \lambda \in \text{supp}\{f^{j_1}\}, j_1 = m_i\}$
• Consider shift polynomials: $\frac{\lambda}{\mathrm{LM}(f)^{i_1}} \cdot f^{i_1} \cdot N_1^{\max\{t-i_1,0\}}(2^{(\beta_2 - \beta_1)n})$
• Choose \mathcal{F}_i : introduce *s* that will be optimized later to reduce
 $N_2^{-\min\{s,i_1\}}v^s \frac{\lambda}{\mathrm{LM}(f)^{i_1}} \cdot f^{i_1} \cdot N_1^{\max\{t-i_1,0\}}(2^{(\beta_2 - \beta_1)n})$

• New $\mathcal{M}_i = \{x^{\alpha_1}y^{\alpha_2}z^{\alpha_3}w^{\alpha_3} - \min\{\alpha_3,s\}v^{s} - \min\{\alpha_3,s\} \mid \alpha_1 + \alpha_2 + \alpha_3 = m_i\}.$

e and denote

is a solution of the

<u>In unknown divisor of N_1 .</u> $(n)^{m_i-i_1}$

<u>e determinant. ($w_0q_2 = N_2, v = q_2$)</u> $m_i - i_1$

 $\mathcal{M}^{(m_i-k)|\mathcal{M}_i|} = \mathcal{M}^{p_{\mathcal{M}}(m_i)}$

 $|LC(\mathcal{F}_{i}[\lambda])| = M_{1}^{p_{\mathcal{F}_{1}}(t,m_{i})} \cdot M_{2}^{p_{\mathcal{F}_{2}}(m_{i})} \text{ (proven to be true)}$ $\lambda \in \mathcal{M}_i$

 $\lambda(X_1,\ldots,X_k,A,V)=X_1^{p_1(m_i)}\cdot\ldots\cdot X_k^{p_1(m_i)}\cdot\ldots\cdot X_k^{p_1(m_$ $\lambda \in \mathcal{M}_i$

Where $M_1 = N_1$, $M_2 = 2^{(\beta_2 - \beta_1)n}$, W is an upper bound of N_2 , and V is an upper bound of q_2 .

(s,m_i)	(0, 0)	(0, 1)	(1, 1)	(0, 2)	(1, 2)	(2, 2)	(0, 3)	(1, 3)	(2, 3)	(3, 3)
$p_w(s,m_i)$	0	1	0	4	1	0	10	4	1	0
$p_v(s,m_i)$	0	0	2	0	3	8	0	4	11	20

$$F_k^{p_k(m_i)} \cdot W^{p_w(s,m_i)} \cdot V^{p_v(s,m_i)}$$

use Grobner basis method or resultant computations to find $(x_0, y_0, z_0, w_0, v_0) = (2^{(\beta_2 - \beta_1)n} x_1 - x_3, x_2 - x_4, a_2, p_2, q_2).$

$n: \log_2 N_i, \quad \alpha: \log_2 q_i, \quad \delta: \log_2 a_i, \quad \gamma: -$

Theorem: G-EIFP $(n, \alpha, \gamma, \delta)$ can be solved in polynomial time when

provided that $\alpha + \gamma \leq 1$.

n	δn	αn	eta n	$eta_1 n$	$eta_2 n$	γn	m	$\dim(\mathcal{L})$	Time for LLL(s)	Time for Gröbner Basis(s)
200	10	20	40	20	30	140	4	15	0.3638	0.0094
400	20	40	80	40	60	280	6	28	1.0674	2.4525
500	25	50	100	50	75	350	6	28	1.3903	3.3241
100	0 50	100	200	100	150	700	8	45	40.0927	1184.4979
					- 1	a		•		

$$\gamma > 4\alpha \left(1 - \sqrt{\alpha}\right) + 2\delta,$$

Table 1: Some experimental results for G-EIFP.

Thanks for listening!

Code: <u>https://github.com/fffmath/CombeeIFP</u>