Solving Modular Linear Equations via Automated Coppersmith and its Applications

December 14, Inscrypt 2024

Yansong Feng **Zhen Liu** Abderrahmane Nitaj Yanbin Pan $1 - 2 - 1$

Academy of Mathematics and Systems Science, Chinese Academy of Sciences 1

2 School of Cyber Science and Technology, Hubei University

Normandie University ³

- Background
- Lattice-based Cryptanalysis: Coppersmith's method
- Our Results
	- Implicit Factorization Problem

Background

Secret Key: (*ϕ*(*N*), *d*)

RSA Cryptosystem

Eve wants to get the SECRET KEY!!!

 $ed \equiv 1 \mod \phi(N) \quad \phi(N) = (p-1)(q-1)$

Lucky Eva got enough MSBs of *p*…

Now he just needs to solve a linear polynomial equation:

-
- $f(x) = x + C \equiv 0 \mod p$ with a small root $x_0 = \widetilde{p} < N$ 1 4

??? U_{\oplus}

How to solve polynomials equations with small roots?

Coppersmith's method

Let $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n} \in \mathbb{R}^m$, the lattice \mathscr{L} is $\mathcal{L} = \left\{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = \sum a_i \mathbf{v}_i, a_i \in \mathbb{Z} \right\}.$ $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n} \in \mathbb{R}^m$, the lattice \mathscr{L} $\mathscr{L} = \left\{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = \mathbb{R}^m \right\}$ 1. Generate shift-polynomials $g_{[i_1, \cdots, i_n, j_1, \cdots, j_k]} = f$

- have the root \mathbf{u} module M^m , for some m .
- 2. Use the coefficient vector of $g_{[i_1, \cdots, i_n, j_1, \cdots, j_k]}(x_1X_1, \ldots, x_kX_k)$ to construct ${\mathscr L}.$
- 3. Use Lattice Reduction (LLL) to find **shorter vectors** h_1, \ldots, h_k $h_j(\mathbf{u}) \equiv 0 \mod M^m$ *h* $h_j(\mathbf{u}) = 0$ over

$$
\mathcal{L} = \left\{ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = \sum_{i=1}^n a_i \mathbf{v}_i, a_i \in \mathbb{Z} \right\}.
$$

Given bounds X_1, \dots, X_k and $f_1, \dots, f_n \in \mathbb{Z}[x_1, \dots, x_k]$ and modulus M, the goal is to find
the small root $\mathbf{u} = (u_1, \dots, u_k)$ with $|u_j| < X_j$, such that $f_i(\mathbf{u}) \equiv 0 \mod M$, $1 \le i \le n$.
1. Generate shift-polynomials $g_{[i_1, \dots, i_n, j_1, \dots, j_k]} = f_1^{i_1} \cdot \dots \cdot f_n^{i_n} \cdot x_1^{j_1} \cdot \dots \cdot x_k^{j_k} \cdot M^{m-(i_1 + \dots + i_n)}$
have the root \mathbf{u} module M^m , for some m.

 $(u) = 0$ over \mathbb{Z}

Crucial Condition: $\mathscr L$ MUST satisfied $\det(\mathscr L) < M^{m \dim(\mathscr L)}$. $m \dim(\mathscr{L})$

Example: $f(x) = x + C \equiv 0 \mod p$ with a small root $x_0 = \widetilde{p} < N$

1 4

$dim(\mathcal{L}) = m + o(m)$ $\det(\mathscr{L}) = N$ $\frac{1}{8}m^2 + o(m^2)$ *X* $\frac{1}{2}m^2 + o(m^2)$

 $\frac{1}{4} \to \det(\mathscr{L}) < p^{m \dim(\mathscr{L})} \to f$ can be solved with Coppersmith's method.

 $X < N$ 1

Lower triangular

Using Coppersmith's method, compute $dim(\mathcal{L})$ and $det(\mathcal{L})$:

Manual Calculation such as calculating

Theorem: dim(\mathscr{L}) and $\det(\mathscr{L})$ are polynomials in m .

$$
\sum_{k=0}^{m} \sum_{i=k}^{m} (i - \min(s, i)) ? \text{NO!}
$$

Now,

Manual Calculation

Lagrange Interpolation

At Asiacrypt'23, Meers and Nowakowski introduced a new automated method called Automated Coppersmith.

• Shift-polynomials *λ* $LM(f_1)^{i_1}\cdot\ldots\cdot LM(f_n)^{i_n}$

- An element of $\mathcal M$ is related to a unique element of $\mathcal F$
- Given a single shift-polynomial, a locally optimal $\mathscr F$ can be constructed automatically

$$
f_1^{i_1}\cdot\ldots\cdot f_n^{i_n}\cdot M^{m-(i_1+\cdots+i_n)}, \lambda\in\mathscr{M}
$$

First determine the elements of the diagonal of the matrix (denote by \mathscr{M}) of the lattice $\mathscr L$ and then select a suitable subset $\mathscr F$ of shift-polynomials to construct the lattice $\mathscr L$

Automated Coppersmith's method

$$
|\mathsf{LC}(\mathcal{F}[\lambda])| \leq M^{(m-k)|\mathcal{M}|}
$$

of the polynomial in $\mathcal F$

.

$$
\mathcal{M}_{i} := \bigcup_{0 \leq j_{1}, \dots, j_{n} \leq i} \text{supp}\{f_{1}^{j_{1}} \cdot \dots \cdot f_{n}^{j_{n}}\}, \text{ for } i \in \mathbb{N}.
$$

\n
$$
\bigcap_{\lambda \in \mathcal{M}_{i}} \lambda(X_{1}, \dots, X_{k}) \cdot \prod_{\lambda \in \mathcal{M}_{i}} |LC(\mathcal{F}_{i}[\lambda])| \leq M^{(m_{i} - k)|\mathcal{M}|}.
$$

\n
$$
M^{(m_{i} - k)|\mathcal{M}_{i}|} = M^{p_{\mathcal{M}}(m_{i})},
$$

∏*λ*∈ℳ*ⁱ*

 $P_{\mathcal{M}}$, P_1 , \cdots , P_k , $P_{\mathcal{F}_i}$ are polynomials of degree $k+1$.

 \Rightarrow $X_1^{\alpha_1}$ 1 $\cdots X_k^{\alpha_k}$ ≤ *M*^{δ−*€*}

Automated Coppersmith's method

Use polynomial interpolation to derive bounds $X_1,\, \cdots\!, X_k$ automatically A sequence of sets $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \cdots$, for any fixed \mathcal{M}_i and $m_i := i \cdot n - a$ corresponding optimal set of shift-polynomials \mathcal{F}_i .

polynomial
$$
\prod_{\lambda \in \mathcal{M}_i} \lambda(X_1, ..., X_k) = X_1^{p_1(m_i)} \cdot ... \cdot X_k^{p_k(m_i)}
$$

$$
|\text{LC}(\mathcal{F}_i[\lambda])| = M^{p_{\mathcal{F}_i}(m_i)}
$$
 (heuristic)
legree $k + 1$.

(monomials set)

Our Results

For linear equations $f_1, \dots, f_n \in \mathbb{Z}[x_1, \dots, x_k]$, deg(f_i)=1. we want to solve $f_i \equiv 0 \mod M_1 * M_2, 1 \le i \le n$. where M_1 is an unknown , $\ M_2$ is known, $\ M_1$ is a known multiple of M_1 ̂ ̂ $f_i \equiv 0 \mod M_1 * M_2 \Rightarrow f_i \equiv 0 \mod M_1 * M_2, 1 \le i \le n$? ̂

-
-
- ̂
-

$$
\frac{\lambda}{LM(f_1)^{i_1}\cdot\ldots\cdot LM(f_n)^{i_n}}f_1^{i_1}\cdot\ldots
$$

- $\prod \lambda(X_1, ..., X_k) \cdot \prod$ *λ*∈ℳ*ⁱ λ*∈ℳ*ⁱ* • Need to ensure: $\prod \lambda(X_1, ..., X_k) \cdot \prod \left| \text{LC}(\mathcal{F}_i[\lambda]) \right| \leq M^{(m_i-k)|\mathcal{M}_i|}$
	- Heuristic: (proven to be true) $\prod |LC(\mathcal{F}_i[\lambda])| = M_1^{p_{\mathcal{F}_1}(t,m_i)} \cdot (M_2)^{p_{\mathcal{F}_2}(m_i)}$.

Homogenous $\& n = 1$ G-EIFP?

$$
\cdot f_n^{i_n} \cdot M_1^{\max\{t - (i_1 + \dots + i_n), 0\}} M_2^{m_i - (i_1 + \dots + i_n)}, \lambda \in \mathcal{M}_i
$$

• Introduce a new parameter *t* to consider shift polynomials

$$
\mathcal{M}_i := \{ \lambda \mid \lambda \in \text{supp}\{f_1^{j_1} \cdot \ldots \cdot f_n^{j_n}\}, j_1 + \ldots + j_n = n \cdot i \}
$$

$$
\mathcal{M}_i := \{ \lambda \mid \lambda \in \text{supp}\{f_1^{j_1} \cdot \ldots \cdot f_n^{j_n}\}, j_1 + \ldots + j_n \leq n \cdot i \}
$$

$$
\lambda \in \mathcal{M}_i
$$

1

Our results

• Better monomials set (better bound **Non-Homogenous linear equations:** there exists i_0 such that f_{i_0}

$$
\left[\|\mathcal{LC}(\mathcal{F}_i[\lambda])\| \le M^{(m_i - k)|\mathcal{M}_i|} \right]
$$

$$
\prod |\mathcal{LC}(\mathcal{F}_i[\lambda])| = M_1^{p_{\mathcal{F}_1}(t, m_i)} \cdot (M_2)^{p_{\mathcal{F}_2}(m_i)}
$$

$$
\text{ds on } X_1, \cdots, X_k)
$$

 $(0) \neq 0$

Homogenous linear equations:

Implicit Factorization Problem

IFP (MSBs case)

p_1 share the same MSBs with p_2

$N_1 = p_1 q_1$ and $N_2 = p_2 q_2$

$N_1 + (p_2 - p_1)q_1 = p_2q_1 \equiv 0 \mod p_2$

Solving $f(x_1, x_2) = x_1 x_2 + N_1 \equiv 0 \mod p_2$

IFP (LSBs case)

IFP (Middle case)

IFP (Generalized case)

How about EIFP with Generalized case? G-EIFP!

 a_1p_1 share some continuous bits with a_2p_2 , which can be located in different positions.

 $a_1 p_1$ $a_2 p_2$

 x_3 $110\cdots001$ x_4 $\left\| \right\|$ shared bits: $M \left\| \right\|$

Definition: Given two *n*-bit RSA moduli $N_1 = p_1q_1$ and $N_2 = p_2q_2$, where *q*₁ and *q*₂ are *an*-bit, suppose that there exist two positive integers a_1 and a_2 with $a_1, a_2 < 2^{\delta n}$ such that $a_1 p_1$ and $a_2 p_2$ share γn bits, where the shared bits may be located in different positions of a_1p_1 and a_2p_2 . The Generalized Extended Implicit Factorization Problem (G-EIFP) asks to factor N_1 and N_2 .

where $(x_0, y_0, z_0) = (2^{(p_2-p_1)n}x_1q_2 - x_3q_2, x_2q_2 - x_4q_2, a_2)$ is a solution of the modular equation $f(x, y, z) \equiv 0 \pmod{2^{(p_2-p_1)n}p_1}$. $(x_0, y_0, z_0) = (2^{(\beta_2 - \beta_1)n}x_1q_2 - x_3q_2, x_2q_2 - x_4q_2, a_2)$ $f(x, y, z) \equiv 0 \pmod{2^{(\beta_2 - \beta_1)n}}$ *p*1)

suppose that a_1p_1 shares γn -bits from the β_1n bit to $(\beta_1 + \gamma)n$ -th bit, and

 $a_2 p_2$ shares bits from $\beta_2 n$ -th bit to $(\beta_2 + \gamma)n$ -th bit, where β_1 and β_2 are known with $\beta_1 \leq \beta_2$. $\beta_1 \leq \beta_2$ *a*₁*p*₁

- $a_1p_1 = x_1 + 2^{\beta_1 n}R + x_22^{(\beta_1 + \gamma)n}$ $a_2p_2 = x_3 + 2^{\beta_2 n}R + x_4 2^{(\beta_2 + \gamma)n}$
- $f(x, y, z) = x + ay + N₂z$ with $a = 2^{(p_2 + \gamma)n}$, $f(x, y, z) = x + ay + N_2z$ with $a = 2^{(\beta_2 + \gamma)n}$

Since , *introduce as a new variable* and denote

a solution of the

 $\max\{t-i_1,0\}$ (2^{(β}2^{-β}1)*n*
1 i erminant. $(w_0q_2=N_2, v=q_2)$

Since
$$
gcd(x_0, y_0, N_2) = q_2
$$
, *introduce w as a new variable* and denote\n
$$
f(x, y, z, w) = x + ay + wz,
$$
\nwhere $(x_0, y_0, z_0, w_0) = (2^{(\beta_2 - \beta_1)n}x_1 - x_3, x_2 - x_4, a_2, p_2)$ is a solution of the modular equation $f(x, y, z, w) \equiv 0 \pmod{2^{(\beta_2 - \beta_1)n}p_1}$.\n\nWe want to solve $f \equiv 0 \mod 2^{(\beta_2 - \beta_1)n}p_1$, where p_1 is an unknown divisor of N_1 .\n\n• Choose $\mathcal{M}_i := \{\lambda \mid \lambda \in \text{supp}\{f^{j_1}\}, j_1 = m_i\}$.\n\n• Consider shift polynomials: $\frac{\lambda}{LM(f)^{i_1}} \cdot f^{i_1} \cdot N_1^{\max\{t - i_1, 0\}}(2^{(\beta_2 - \beta_1)n})^{m_i - i_1}$.\n• Choose \mathcal{F}_i : *introduce s that will be optimized later to reduce determinant*. $(w_0 q_2 = N_2, v = N_2^{-\min\{s, i_1\}}v^s \frac{\lambda}{LM(f)^{i_1}} \cdot f^{i_1} \cdot N_1^{\max\{t - i_1, 0\}}(2^{(\beta_2 - \beta_1)n})^{m_i - i_1}$.

• New $\mathcal{M}_i = \{x^{\alpha_1}y^{\alpha_2}z^{\alpha_3}w^{\alpha_3 - \min\{\alpha_3, s\}}v^{s - \min\{\alpha_3, s\}} \mid \alpha_1 + \alpha_2 + \alpha_3 = m_i\}$ } .

∏ *λ*∈ℳ*ⁱ* $\lambda(X_1, \ldots, X_k, A, V) = X_1^{p_1(m_i)}$ 1 $\cdots X_k^{p_k(m_i)}$

Where $M_1 = N_1$, $M_2 = 2^{(\beta_2 - \beta_1)n}$, *W* is an upper bound of N_2 , and *V* is an upper bound of q_2 .

use Grobner basis method or resultant computations to find $(x_0, y_0, z_0, w_0, v_0) = (2^{(\beta_2-\beta_1)n}x_1 - x_3, x_2 - x_4, a_2, p_2, q_2)$.

 $M^{(m_i-k)|\mathcal{M}_i|} = M^{p_{\mathcal{M}}(m_i)}$

∏ *λ*∈ℳ*ⁱ* $|LC(\mathcal{F}_i[\lambda])| = M_1^{p_{\mathcal{F}_1}(t,m_i)}$ 1 $\cdot M_{2}^{p_{\mathcal{F}_{2}}(m_{i})}$ 2

$$
\mathcal{P}_k(m_i) \cdot \mathbf{W}^p \mathcal{P}_w(s,m_i) \cdot \mathbf{V}^p \mathcal{P}_v(s,m_i)
$$

(proven to be true)

$$
\gamma > 4\alpha \left(1 - \sqrt{\alpha} \right) + 2\delta,
$$

Table 1: Some experimental results for G-EIFP.

Theorem :

provided that $\alpha + \gamma \leq 1$.

$n: \log_2 N_i$, $\alpha: \log_2 q_i$, $\delta: \log_2 a_i$, $\gamma:$

Thanks for listening!

Code: [https://github.com/](https://github.com/fffmath/CombeeIFP)fffmath/CombeeIFP