
Solving Modular Linear Equations via
Automated Coppersmith and its Applications

Yansong Feng Zhen Liu Abderrahmane Nitaj Yanbin Pan

December 14, Inscrypt 2024

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

1 2 3 1

1

 School of Cyber Science and Technology, Hubei University2

Normandie University3

• Background

• Lattice-based Cryptanalysis: Coppersmith’s method

• Our Results

• Implicit Factorization Problem

Outline

Background

Secret Key: (ϕ(N), d)

RSA Cryptosystem

Eve wants to get the SECRET KEY!!!

ed ≡ 1 mod ϕ(N) ϕ(N) = (p − 1)(q − 1)

Eva

Public key: (N, e)

Lucky Eva got enough MSBs of …p

Now he just needs to solve a linear polynomial equation:

 with a small root f(x) = x + C ≡ 0 mod p x0 = p̃ < N
1
4

How to solve polynomials equations with small roots?
???

Coppersmith’s method

Coppersmith’s method

Let , the lattice is

 .

v1, v2, …, vn ∈ ℝm ℒ

ℒ = {v ∈ ℝm | v =
n

∑
i=1

aivi, ai ∈ ℤ}
Given bounds and and modulus , the goal is to find

the small root with , such that .

X1, ⋯, Xk f1, ⋯, fn ∈ ℤ[x1, …, xk] M

u = (u1, …, uk) |uj | < Xj fi(u) ≡ 0 mod M, 1 ≤ i ≤ n
1. Generate shift-polynomials

have the root module , for some .

2. Use the coefficient vector of to construct .

3. Use Lattice Reduction (LLL) to find shorter vectors

g[i1,⋯,in,j1,⋯,jk] = f i1
1 ⋅ . . . ⋅ f in

n ⋅ x j1
1 ⋅ ⋅ x jk

k ⋅ Mm−(i1+⋯+in)

u Mm m

g[i1,⋯,in,j1,⋯,jk](x1X1, …, xkXk) ℒ

h1, …, hk

hj(u) ≡ 0 mod Mm over hj(u) = 0 ℤ

Example: with a small root f(x) = x + C ≡ 0 mod p x0 = p̃ < N
1
4

dim(ℒ) = m + o(m)

det(ℒ) = N
1
8 m2+o(m2)X

1
2 m2+o(m2)

X < N
1
4 → det(ℒ) < pm dim(ℒ) → can be solved with Coppersmith’s method.f

Lower triangular

x0 x1 x2 x3 x4 x5 x6 x7 x8

Crucial Condition: MUST satisfied .ℒ det(ℒ) < Mm dim(ℒ)

Using Coppersmith’s method, compute and :dim(ℒ) det(ℒ)

Manual Calculation such as calculating ? NO!
m

∑
k=0

m

∑
i=k

(i − min(s, i))

Theorem: and are polynomials in .dim(ℒ) det(ℒ) m

Manual Calculation

Now,

Lagrange Interpolation

At Asiacrypt'23, Meers and Nowakowski introduced a new automated method called
Automated Coppersmith.

First determine the elements of the diagonal of the matrix (denote by) of the lattice
 and then select a suitable subset of shift-polynomials to construct the lattice

• Shift-polynomials

• An element of is related to a unique element of

• Given a single shift-polynomial, a locally optimal can be constructed automatically

Need to ensure:

ℳ
ℒ ℱ ℒ

λ
LM(f1)i1 ⋅ . . . ⋅ LM(fn)in

f i1
1 ⋅ . . . ⋅ f in

n ⋅ Mm−(i1+⋯+in), λ ∈ ℳ

ℳ ℱ

ℱ

Automated Coppersmith’s method

∏
λ∈ℳ

λ(X1, …, Xk) ⋅ ∏
λ∈ℳ

|LC(ℱ[λ]) | ≤ M(m−k)|ℳ| .

Leading monomial of the polynomial in ℱ
Coefficient of Leading monomial

of the polynomial in ℱ

 ,

∏
λ∈ℳi

λ(X1, …, Xk) ⋅ ∏
λ∈ℳi

|LC(ℱi[λ]) | ≤ M(mi−k)|ℳ| .

M(mi−k)|ℳi| = Mpℳ(mi)

∏λ∈ℳi
λ(X1, …, Xk) = Xp1(mi)

1 ⋅ … ⋅ Xpk(mi)
k

∏λ∈ℳi
|LC(ℱi[λ]) | = Mpℱi(mi)

Automated Coppersmith’s method

ℳi := ⋃
0≤ j1,…,jn≤i

supp{f j1
1 ⋅ … ⋅ f jn

n }, for i ∈ ℕ .

Use polynomial interpolation to derive bounds automatically
A sequence of sets , for any fixed and – a
corresponding optimal set of shift-polynomials .

X1, ⋯, Xk
ℳ1 ⊂ ℳ2 ⊂ ⋯ ℳi mi := i ⋅ n

ℱi

⇒ Xα1
1 ⋯Xαk

k ≤ Mδ−ϵ

polynomial
interpolation

(heuristic)

Pℳ, P1, ⋯, Pk, Pℱi are polynomials of degree k + 1.

(monomials set)

Our Results

For linear equations , deg()=1.

we want to solve .

where is an unknown , is known, is a known multiple of

f1, ⋯, fn ∈ ℤ[x1, …, xk] fi

fi ≡ 0 mod M̂1 * M2, 1 ≤ i ≤ n

M̂1 M2 M1 M̂1

Motivation

fi ≡ 0 mod M̂1 * M2 ⇒ fi ≡ 0 mod M1 * M2, 1 ≤ i ≤ n?

λ
LM(f1)i1 ⋅ . . . ⋅ LM(fn)in

f i1
1 ⋅ . . . ⋅ f in

n ⋅ Mmax{t−(i1+⋯+in),0}
1 M2

mi−(i1+⋯+in), λ ∈ ℳi

• Introduce a new parameter to consider shift polynomials t
ℳi := {λ | λ ∈ supp{f j1

1 ⋅ … ⋅ f jn
n }, j1 + … + jn = n ⋅ i}

ℳi := {λ | λ ∈ supp{f j1
1 ⋅ … ⋅ f jn

n }, j1 + … + jn ≤ n ⋅ i}

∏
λ∈ℳi

|LC(ℱi[λ]) | = Mpℱ1
(t,mi)

1 ⋅ (M2)
pℱ2

(mi) .• Heuristic: (proven to be true)

Our results

Homogenous & n = 1 G-EIFP ?

• Better monomials set (better bounds on)X1, ⋯, Xk

∏
λ∈ℳi

λ(X1, …, Xk) ⋅ ∏
λ∈ℳi

|LC(ℱi[λ]) | ≤ M(mi−k)|ℳi| .• Need to ensure:

Non-Homogenous linear equations: there exists such that i0 fi0(0) ≠ 0

Homogenous linear equations:

Implicit Factorization Problem

 and N1 = p1q1 N2 = p2q2

 share the same MSBs with p1 p2

N1 + (p2 − p1)q1 = p2q1 ≡ 0 mod p2

IFP (MSBs case)

Solving f(x1, x2) = x1x2 + N1 ≡ 0 mod p2

IFP (LSBs case)

IFP (Middle case)

IFP (Generalized case)

 and N1 = p1q1 N2 = p2q2

 share the same MSBs with p1 p2

EIFP (MSBs case)

 share the same MSBs with a1p1 a2p2

How about EIFP with Generalized case? G-EIFP!

 share some continuous bits with , which can be located in different positions.a1p1 a2p2

a1p1 a2p2

Definition: Given two -bit RSA moduli and , where
 and are -bit, suppose that there exist two positive integers and

with such that and share bits, where the shared
bits may be located in different positions of and . The Generalized
Extended Implicit Factorization Problem (G-EIFP) asks to factor and .

n N1 = p1q1 N2 = p2q2
q1 q2 αn a1 a2

a1, a2 < 2δn a1p1 a2p2 γn
a1p1 a2p2

N1 N2

G-EIFP

 with ,

where is a solution of the

modular equation .

f(x, y, z) = x + ay + N2z a = 2(β2+γ)n

(x0, y0, z0) = (2(β2−β1)nx1q2 − x3q2, x2q2 − x4q2, a2)
f(x, y, z) ≡ 0 (mod 2(β2−β1)np1)

suppose that shares -bits from the bit to -th bit, and
 shares bits from -th bit to -th bit, where and are

known with .

a1p1 γn β1n (β1 + γ)n
a2p2 β2n (β2 + γ)n β1 β2

β1 ≤ β2 a1p1

a2p2

G-EIFP

We want to solve , where is an unknown divisor of .f ≡ 0 mod 2(β2−β1)np1 p1 N1

λ
LM(f)i1

⋅ f i1 ⋅ Nmax{t−i1,0}
1 (2(β2−β1)n)mi−i1• Consider shift polynomials:

Since , introduce as a new variable and denote

 ,

where is a solution of the
modular equation .

gcd(x0, y0, N2) = q2 w

f(x, y, z, w) = x + ay + wz

(x0, y0, z0, w0) = (2(β2−β1)nx1 − x3, x2 − x4, a2, p2)
f(x, y, z, w) ≡ 0 (mod 2(β2−β1)np1)

• Choose ℳi := {λ | λ ∈ supp{f j1}, j1 = mi}

N−min{s,i1}
2 vs λ

LM(f)i1
⋅ f i1 ⋅ Nmax{t−i1,0}

1 (2(β2−β1)n)mi−i1

• Choose : introduce that will be optimized later to reduce determinant. ()ℱi s w0q2 = N2, v = q2

• New ℳi = {xα1yα2zα3wα3−min{α3,s}vs−min{α3,s} |α1 + α2 + α3 = mi} .

Lagrange Interpolation

 and dim(ℒ) det(ℒ)

t = mτ1

s = mτ2

M(mi−k)|ℳi| = Mpℳ(mi)

∏
λ∈ℳi

|LC(ℱi[λ]) | = Mpℱ1
(t,mi)

1 ⋅ Mpℱ2
(mi)

2

∏
λ∈ℳi

λ(X1, …, Xk, A, V) = Xp1(mi)
1 ⋅ … ⋅ Xpk(mi)

k ⋅ Wpw(s,mi) ⋅ Vpv(s,mi)

Where , W is an upper bound of , and V is an upper bound of .
M1 = N1, M2 = 2(β2−β1)n N2 q2

(proven to be true)

use Grobner basis method or resultant computations to find .(x0, y0, z0, w0, v0) = (2(β2−β1)nx1 − x3, x2 − x4, a2, p2, q2)

 : n : log2 Ni, α : log2 qi, δ : log2 ai, γ
shared bits

n
Theorem:

Summary

Thanks for listening!

Code: https://github.com/fffmath/CombeeIFP

https://github.com/fffmath/CombeeIFP

