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Background



Secret Key: (ϕ(N), d)

RSA Cryptosystem

Eve wants to get the SECRET KEY!!!

ed ≡ 1 mod ϕ(N) ϕ(N) = (p − 1)(q − 1)

Eva

Public key: (N, e)



Lucky Eva got enough MSBs of …p

Now he just needs to solve a linear polynomial equation:

 with a small root f(x) = x + C ≡ 0 mod p x0 = p̃ < N
1
4

How to solve polynomials equations with small roots?
???



Coppersmith’s method



Coppersmith’s method

Let  , the lattice  is 


                             .

v1, v2, …, vn ∈ ℝm ℒ

ℒ = {v ∈ ℝm | v =
n

∑
i=1

aivi, ai ∈ ℤ}
Given bounds  and   and modulus , the goal is to find 


the small root  with ,  such that  .

X1, ⋯, Xk f1, ⋯, fn ∈ ℤ[x1, …, xk] M

u = (u1, …, uk) |uj | < Xj fi(u) ≡ 0 mod M, 1 ≤ i ≤ n
1. Generate shift-polynomials  

have the root  module , for some .


2. Use the coefficient vector of  to construct .


3. Use Lattice Reduction (LLL) to  find shorter vectors 

g[i1,⋯,in,j1,⋯,jk] = f i1
1 ⋅ . . . ⋅ f in

n ⋅ x j1
1 ⋅ . . . . ⋅ x jk

k ⋅ Mm−(i1+⋯+in)

u Mm m

g[i1,⋯,in,j1,⋯,jk](x1X1, …, xkXk) ℒ

h1, …, hk

hj(u) ≡ 0 mod Mm  over hj(u) = 0 ℤ



Example:   with a small root f(x) = x + C ≡ 0 mod p x0 = p̃ < N
1
4


dim(ℒ) = m + o(m)

det(ℒ) = N
1
8 m2+o(m2)X

1
2 m2+o(m2)

X < N
1
4 → det(ℒ) < pm dim(ℒ) →  can be solved with Coppersmith’s method.f

Lower triangular

x0 x1 x2 x3 x4 x5 x6 x7 x8

Crucial  Condition:   MUST satisfied .ℒ det(ℒ) < Mm dim(ℒ)



Using Coppersmith’s method, compute  and :dim(ℒ) det(ℒ)

Manual Calculation such as calculating ? NO!
m

∑
k=0

m

∑
i=k

(i − min(s, i))

Theorem:  and  are polynomials in .dim(ℒ) det(ℒ) m

Manual Calculation

Now, 

Lagrange Interpolation



At Asiacrypt'23, Meers and Nowakowski introduced a new automated method called 
Automated Coppersmith.  

First determine the elements of the diagonal of the matrix (denote by ) of the lattice 
 and then select a suitable subset  of shift-polynomials to construct the lattice 


• Shift-polynomials 


• An element of  is related to a unique element of 


• Given a single shift-polynomial, a locally optimal  can be constructed automatically  


Need to ensure:

ℳ
ℒ ℱ ℒ

λ
LM( f1)i1 ⋅ . . . ⋅ LM( fn)in

f i1
1 ⋅ . . . ⋅ f in

n ⋅ Mm−(i1+⋯+in), λ ∈ ℳ

ℳ ℱ

ℱ

Automated Coppersmith’s method

∏
λ∈ℳ

λ(X1, …, Xk) ⋅ ∏
λ∈ℳ

|LC(ℱ[λ]) | ≤ M(m−k)|ℳ| .

Leading monomial of the polynomial in  ℱ
Coefficient of Leading monomial  

of the polynomial in  ℱ






 , 

∏
λ∈ℳi

λ(X1, …, Xk) ⋅ ∏
λ∈ℳi

|LC(ℱi[λ]) | ≤ M(mi−k)|ℳ| .

M(mi−k)|ℳi| = Mpℳ(mi)

∏λ∈ℳi
λ(X1, …, Xk) = Xp1(mi)

1 ⋅ … ⋅ Xpk(mi)
k

∏λ∈ℳi
|LC(ℱi[λ]) | = Mpℱi(mi)

Automated Coppersmith’s method

ℳi := ⋃
0≤ j1,…,jn≤i

supp{f j1
1 ⋅ … ⋅ f jn

n },  for i ∈ ℕ .

Use polynomial interpolation to derive bounds  automatically
A sequence of sets ,  for any fixed  and – a 
corresponding optimal set of shift-polynomials . 

X1, ⋯, Xk
ℳ1 ⊂ ℳ2 ⊂ ⋯ ℳi mi := i ⋅ n

ℱi

⇒ Xα1
1 ⋯Xαk

k ≤ Mδ−ϵ

polynomial  
interpolation 

(heuristic)

Pℳ, P1, ⋯, Pk, Pℱi are polynomials of degree k + 1.

(monomials set)



Our Results



For linear equations ,  deg(  )=1.

we want to solve .

where  is an unknown ,   is known,   is a known multiple of 

f1, ⋯, fn ∈ ℤ[x1, …, xk] fi

fi ≡ 0 mod M̂1 * M2, 1 ≤ i ≤ n

M̂1 M2 M1 M̂1

Motivation

fi ≡ 0 mod M̂1 * M2 ⇒ fi ≡ 0 mod M1 * M2, 1 ≤ i ≤ n?



λ
LM( f1)i1 ⋅ . . . ⋅ LM( fn)in

f i1
1 ⋅ . . . ⋅ f in

n ⋅ Mmax{t−(i1+⋯+in),0}
1 M2

mi−(i1+⋯+in), λ ∈ ℳi

• Introduce a new parameter  to consider shift polynomials t
ℳi := {λ | λ ∈ supp{f j1

1 ⋅ … ⋅ f jn
n }, j1 + … + jn = n ⋅ i}

ℳi := {λ | λ ∈ supp{f j1
1 ⋅ … ⋅ f jn

n }, j1 + … + jn ≤ n ⋅ i}

∏
λ∈ℳi

|LC(ℱi[λ]) | = Mpℱ1
(t,mi)

1 ⋅ (M2)
pℱ2

(mi) .• Heuristic: (proven to be true )

Our results

Homogenous &  n = 1 G-EIFP ?

• Better monomials set ( better bounds on )X1, ⋯, Xk

∏
λ∈ℳi

λ(X1, …, Xk) ⋅ ∏
λ∈ℳi

|LC(ℱi[λ]) | ≤ M(mi−k)|ℳi| .• Need to ensure:

Non-Homogenous linear equations: there exists  such that i0 fi0(0) ≠ 0

Homogenous linear equations:



Implicit Factorization Problem



 and N1 = p1q1 N2 = p2q2

 share the same MSBs with p1 p2

N1 + (p2 − p1)q1 = p2q1 ≡ 0 mod p2

IFP (MSBs case)

Solving f(x1, x2) = x1x2 + N1 ≡ 0 mod p2



IFP (LSBs case)

IFP (Middle case)

IFP (Generalized case)



 and N1 = p1q1 N2 = p2q2

 share the same MSBs with p1 p2

EIFP (MSBs case)

 share the same MSBs with a1p1 a2p2

How about EIFP with Generalized case? G-EIFP!

 share some continuous bits with , which can be located in different positions.a1p1 a2p2

a1p1 a2p2



Definition:  Given two -bit RSA moduli and , where  
 and   are -bit,  suppose that there exist two positive integers  and  

with  such that  and    share   bits, where the shared 
bits may be located in different positions of  and  . The Generalized 
Extended Implicit Factorization Problem (G-EIFP) asks to factor   and . 

n N1 = p1q1 N2 = p2q2
q1 q2 αn a1 a2

a1, a2 < 2δn a1p1 a2p2 γn
a1p1 a2p2

N1 N2

G-EIFP



                           with  ,  


where  is a solution of the  

modular equation .

f(x, y, z) = x + ay + N2z a = 2(β2+γ)n

(x0, y0, z0) = (2(β2−β1)nx1q2 − x3q2, x2q2 − x4q2, a2)
f(x, y, z) ≡ 0 (mod 2(β2−β1)np1)

suppose that  shares -bits from the  bit to -th bit, and 
 shares bits from -th bit to -th bit, where  and  are 

known with .

a1p1 γn β1n (β1 + γ)n
a2p2 β2n (β2 + γ)n β1 β2

β1 ≤ β2 a1p1

a2p2

G-EIFP



We want to solve  , where   is an unknown divisor of .f ≡ 0 mod 2(β2−β1)np1 p1 N1

λ
LM( f )i1

⋅ f i1 ⋅ Nmax{t−i1,0}
1 (2(β2−β1)n)mi−i1• Consider shift polynomials:  

Since , introduce  as a new variable and denote   


 , 


where  is a solution of the 
modular equation .


gcd(x0, y0, N2) = q2 w

f(x, y, z, w) = x + ay + wz

(x0, y0, z0, w0) = (2(β2−β1)nx1 − x3, x2 − x4, a2, p2)
f(x, y, z, w) ≡ 0 (mod 2(β2−β1)np1)

• Choose ℳi := {λ | λ ∈ supp{f j1}, j1 = mi}

N−min{s,i1}
2 vs λ

LM( f )i1
⋅ f i1 ⋅ Nmax{t−i1,0}

1 (2(β2−β1)n)mi−i1

• Choose : introduce  that will be optimized later to reduce determinant. ( )ℱi s w0q2 = N2, v = q2

• New ℳi = {xα1yα2zα3wα3−min{α3,s}vs−min{α3,s} |α1 + α2 + α3 = mi} .



Lagrange Interpolation

 and  dim(ℒ) det(ℒ)

t = mτ1

s = mτ2

M(mi−k)|ℳi| = Mpℳ(mi)

∏
λ∈ℳi

|LC(ℱi[λ]) | = Mpℱ1
(t,mi)

1 ⋅ Mpℱ2
(mi)

2

∏
λ∈ℳi

λ(X1, …, Xk, A, V) = Xp1(mi)
1 ⋅ … ⋅ Xpk(mi)

k ⋅ Wpw(s,mi) ⋅ Vpv(s,mi)

Where  ,  W is an upper bound of , and V is an upper bound of .
M1 = N1, M2 = 2(β2−β1)n N2 q2

(proven to be true)

use  Grobner basis method or resultant computations to find .(x0, y0, z0, w0, v0) = (2(β2−β1)nx1 − x3, x2 − x4, a2, p2, q2)



 :  n : log2 Ni, α : log2 qi, δ : log2 ai, γ
shared bits

n
Theorem:

Summary



Thanks for listening!

Code: https://github.com/fffmath/CombeeIFP

https://github.com/fffmath/CombeeIFP

