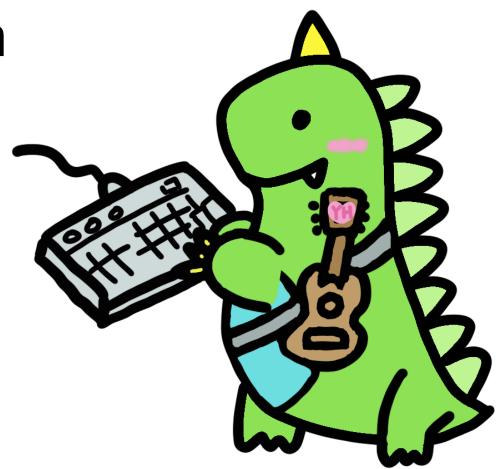
Newton Polytope-Based Strategy for Finding Roots of Multivariate Polynomials

Yansong Feng

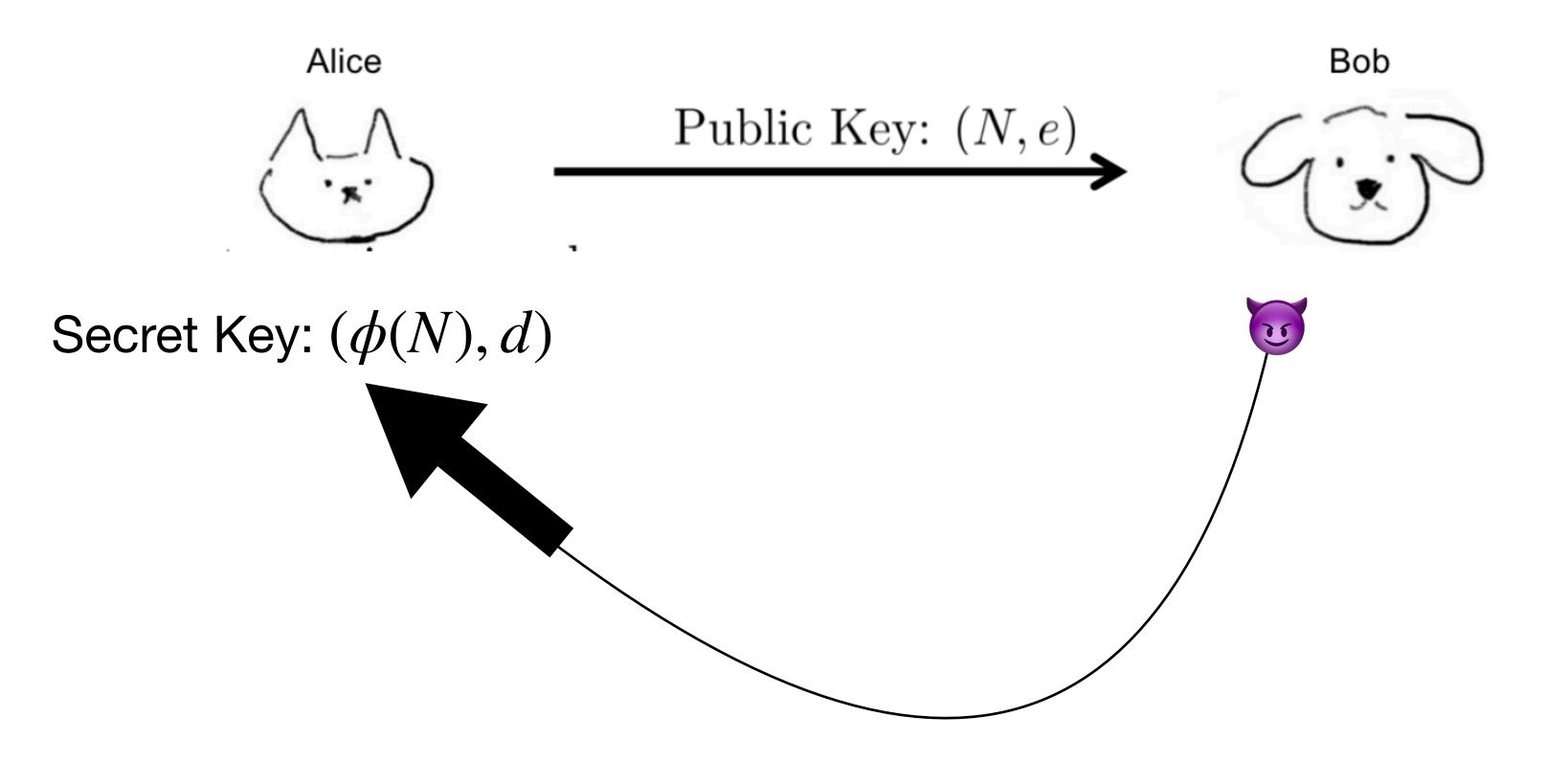
joint work with Abderrahmane Nitaj and Yanbin Pan



- Background
- Lattice-based Cryptanalysis: Coppersmith's method
- Compute $\dim(\mathscr{L}) \& \det(\mathscr{L})$
- Applications

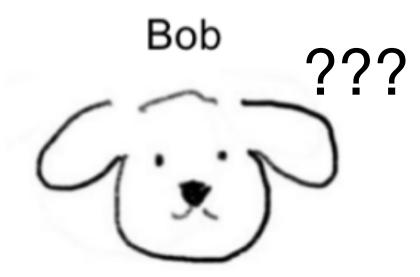
Background

RSA Cryptosystem $ed \equiv 1 \text{ me}$

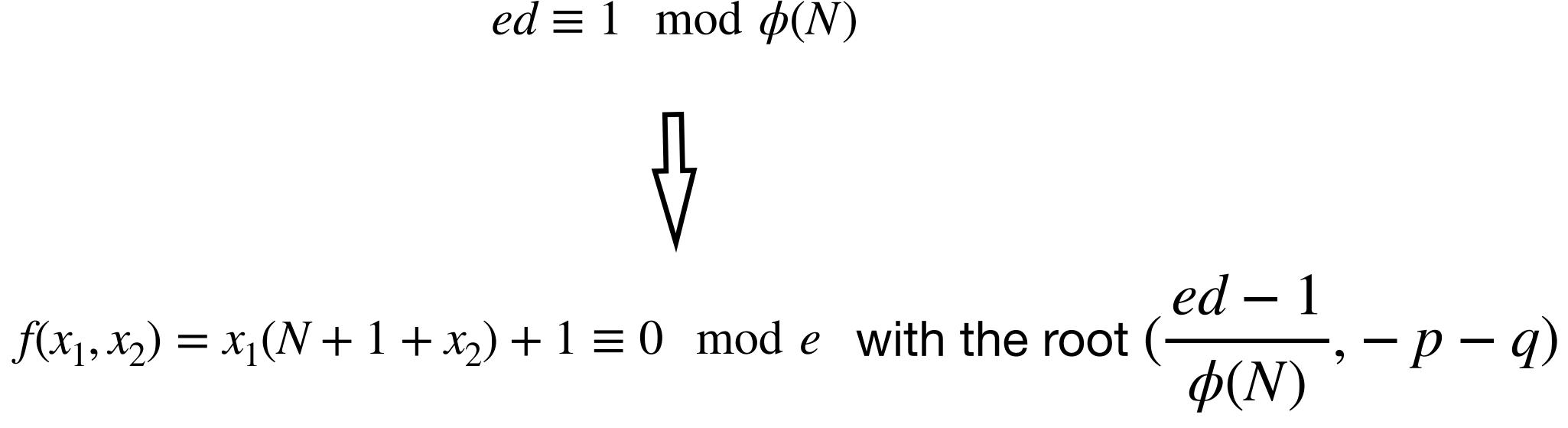


Bad Bob wants to get the SECRET KEY!!!

To be more precise...



Bob wants to solve the polynomial equations...



Coppersmith's method

Coppersmith's method

such that $f(\mathbf{u}) \equiv 0 \mod M$.

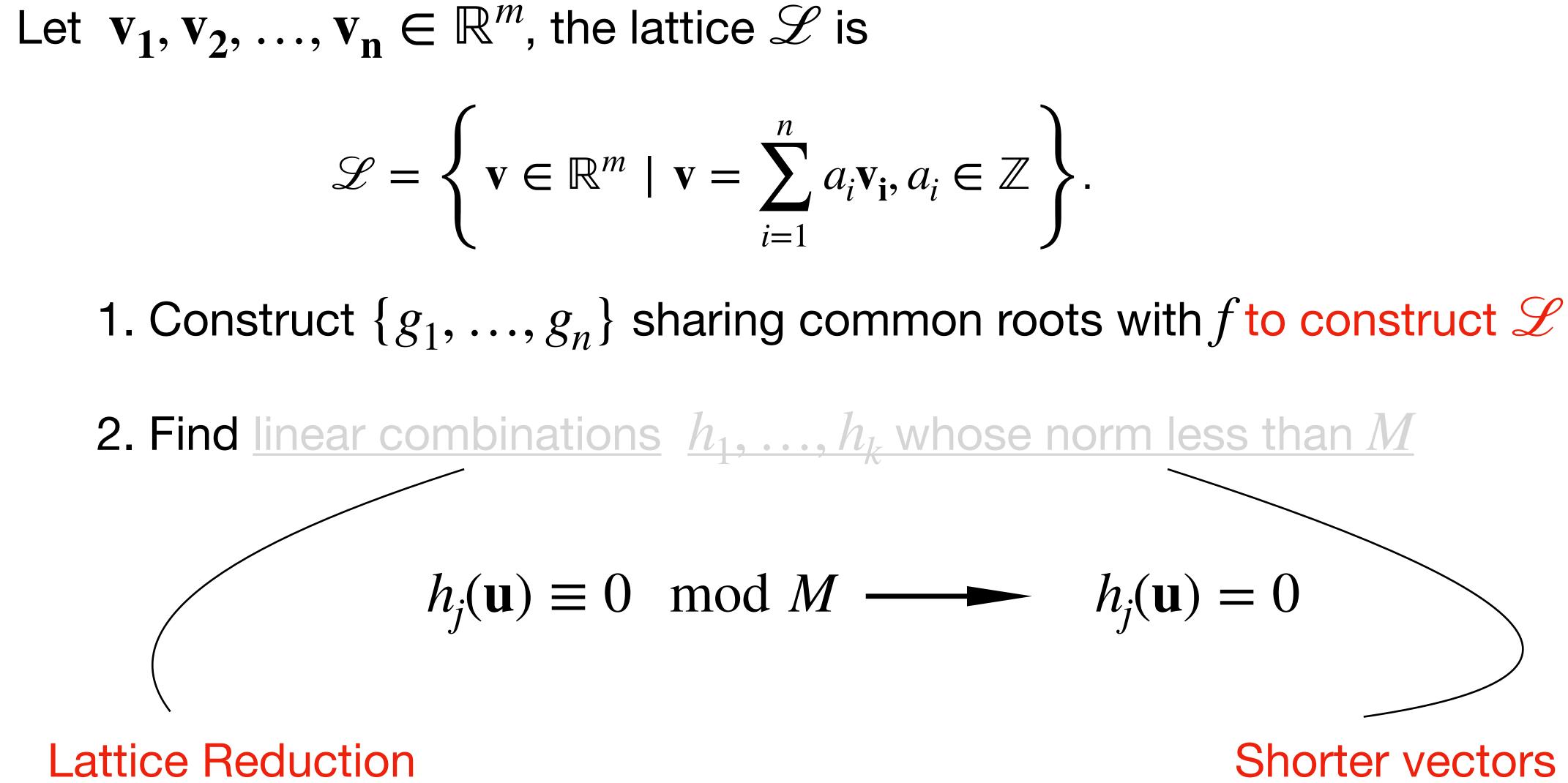
- 1. Construct $\{g_1, \ldots, g_n\}$ sharing common roots with f
- 2. Find linear combinations h_1, \ldots, h_k whose norm less than M

 $h_j(\mathbf{u}) \equiv 0 \mod M \longrightarrow h_j(\mathbf{u}) = 0$

Lattice Reduction

For $f \in \mathbb{Z}[x_1, \dots, x_k]$ and modulus M, the goal is to find the small root $\mathbf{u} = (u_1, \dots, u_k)$,

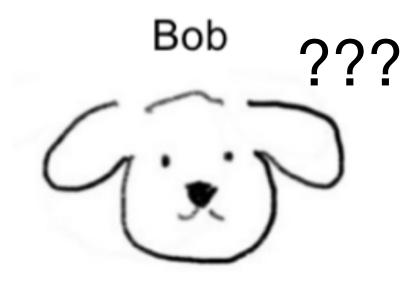
Coppersmith's method



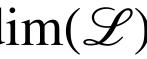
Compute $dim(\mathcal{L})$ & $det(\mathcal{L})$

\mathscr{L} MUST satisfied det $(\mathscr{L}) < M^{\dim(\mathscr{L})}$.

In the Jochemsz-May Strategy, fix integer *m* and it holds that dim(\mathscr{L}) = $|\{\lambda | \lambda \text{ is a monomial of } f^m\}|.$



How to compute $\dim(\mathscr{L})$??



Manual calculation:

f = x + 1, the monomials of f^m is $\{1, x, x^2, ..., x^m\}$

Manual calculation:

f = x + 1, the monomials of f^m is $\{1, x, x^2, ..., x^m\}$ $f = x_1(N + 1 + x_2) + 1$, the number of monomials of f^m is $\sum_{m=1}^{m} \sum_{m=1}^{m-i_1} 1 = \frac{1}{2}m^2 + \frac{3}{2}m + 1 = \frac{1}{2}m^2 + o(m^2).$ $i_1 = 0 i_2 = 0$

Manual calculation:

f = x + 1, the monomials of f^m is $\{1, x, x^2, ..., x^m\}$ $f = x_1(N + 1 + x_2) + 1$, the number of monomials of f^m is $\sum_{m=1}^{m} \sum_{m=1}^{m-i_1} 1 = \frac{1}{2}m^2 + \frac{3}{2}m + 1 = \frac{1}{2}m^2 + o(m^2).$ $i_1 = 0$ $i_2 = 0$

Now time to you: HOW COULD YOU COMPUTE f^m ?

But how about $f = x_1^2 + a_1x_1x_2^2 + a_2x_1x_2 + a_3x_1 + a_4x_2^2 + a_5x_2 + a_6$?

Heuristic Method: Meers & Nowakowski, Asiacrypt'23

Heurístíc: dim(\mathscr{L}) is a polynomial in *m* with degree k

Compute $\dim(\mathscr{L})$

Interpolation at m = 0, 1, ..., k.

Manual calculation vs. Heuristic Interpolation:

$$f = x_1(N + 1 + x_2) + 1$$
, the number of 1

$$\sum_{i_1=0}^{m} \sum_{i_2=0}^{m-i_1} 1 = \frac{1}{2}m^2 + \frac{3}{2}m + 1 = \frac{1}{2}m^2 + \frac{3}{2}m^2 + \frac{1}{2}m^2 + \frac{1}$$

m	0	1	2
dim(L)	1	3	6

$$\dim(\mathscr{L}) = \frac{1}{2}m^2 + \frac{3}{2}m + 1 = \frac{1}{2}m^2 + \frac{3}{2}m^2 + \frac{3}$$

Bob

???

It seems reasonable but is this Heuristic really CORRECT?

monomials of f^m is

 $+ o(m^2)$.

 $o(m^2)$.

Counterexample

Consider $f = x^5 + x + 1$, is the number of monomials in f^m always a polynomial in *m* with degree 1???

m	0	1	2	3	4	5
dim(L)	1	3	6	10	15	20

- Interpolation at $m = 0, 1 \operatorname{dim}(\mathscr{L}) = 2m + 1$
- Interpolation at $m = 1, 2 > \dim(\mathscr{L}) = 3m$
- Interpolation at m = 2, 3 3 2
- Interpolation at m = 3, 4 5 dim $(\mathscr{L}) = 5m 5$ ullet
- Interpolation at m = 4, 5 5

Fixed Heuristic:

$\dim(\mathscr{L})$ is a polynomial in *m* with degree k, for large enough *m*.

Is this correct now? Yes!

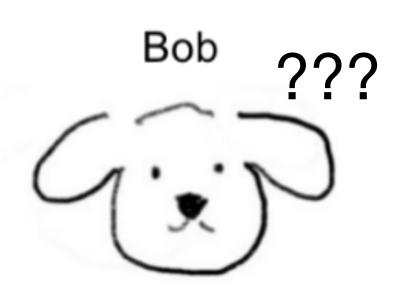
Proof: dim $(\mathscr{L})(m)$ is the dimension of some graded modular. Hence using Hilbert theorem, the Hilbert function becomes polynomial when m is large enough, which is called Hilbert polynomial.

Fixed Heurístíc:

$\dim(\mathscr{L})$ is a polynomial in m with degree k, for large enough m.

For a 4-variable *f*, we sometimes need $m > 2^{300}$! Is this correct now? Yes!

Proof : dim(\mathscr{L})(*m*) is the dimension of some graded modular. Hence using Hilbert theorem, the Hilbert function becomes polynomial when m is large enough, which is called Hilbert polynomial.



So I should to compute f^m for $m > 2^{300}$?! Impossible!!!

Newton polytope

As we just need the leading term/coefficient...

For $f = x_1(N + 1 + x_2) + 1$, dim(.

$$\mathscr{L}) = \frac{1}{2}m^2 + o(m^2).$$

Newton polytope

As we just need the leading term/coefficient...

For $f = x_1(N + 1 + x_2) + 1$, dim(

Define $A(f) = \{(i_1, ..., i_k) | x_1^{i_1} \cdot ...\}$ Theorem: dim(\mathscr{L}) = V(A(f)) + $o(m^k)$.

$$\mathscr{L}) = \frac{1}{2}m^2 + o(m^2).$$

$$\cdot x_k^{i_k} \text{ is a monomial of } f \}$$

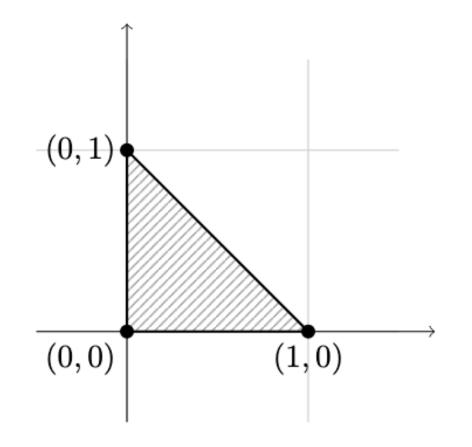
Newton polytope

As we just need the leading term/coefficient...

For $f = x_1(N + 1 + x_2) + 1$, dim(.

Define $A(f) = \{(i_1, ..., i_k) | x_1^{i_1} \cdot ...\}$

Theorem: $\dim(\mathscr{L}) = V(A(f)) + o(m^k)$.



 $V(A(f)) = \frac{1}{2}.$

$$\mathscr{L}) = \frac{1}{2}m^2 + o(m^2).$$

$$\cdot x_k^{i_k} \text{ is a monomial of } f \}$$

Explicit formulas for $dim(\mathcal{L})$ & $det(\mathcal{L})$

Now det(
$$\mathscr{L}$$
) < $M^{\dim(\mathscr{L})}$ can be wr
 $X_1^{\int_{N(f)} x_1 dV} \cdot \ldots \cdot X_k^{\int_{N(f)} x_k dV} M^{\frac{k}{k+1} \int_{N(f)} x_k dV}$

where $N(\cdot)$ means the convex hull.

Bob

Good! What's the use?

ritten as

 $f^{(1)} = M^{\int_{N(f)} 1 \, dV},$

Applications

Commutative Isogeny Hidden Number Problem Definition (CI-HNP for CSURF):

Solve the following equations:

$$f_1(x_1, x_2, x_3) := x_1^2 + a_1 x_1 x_2^2 + a_2 x_1 x_2 + a_3 x_1 + a_4 x_2^2 + a_5 x_2 + a_6,$$

$$f_2(x_1, x_2, x_3) := x_3^2 + b_1 x_1^2 x_3 + b_2 x_1 x_3 + b_3 x_3 + b_4 x_1^2 + b_5 x_1 + b_6,$$

Manual calculation 🔬 Newton polytope Required MSBs is less than [MN23, Asiacrypt'23] and concurrent work by Keegan Ryan (2024/1577).

Commutative Isogeny Hidden Number Problem Definition (CI-HNP for CSURF):

Solve the following equations:

$$f_1(x_1, x_2, x_3) := x_1^2 + a_1 x_1 x_2^2 + a_2 x_1 x_2 + a_3 x_1 + a_4 x_2^2 + a_5 x_2 + a_6,$$

$$f_2(x_1, x_2, x_3) := x_3^2 + b_1 x_1^2 x_3 + b_2 x_1 x_3 + b_3 x_3 + b_4 x_1^2 + b_5 x_1 + b_6,$$

Manual calculation Newton polytope

Required MSBs is less than [MN23, Asiacrypt'23] and concurrent work by Keegan Ryan (2024/1577).

Both [MN23] and [Rya24] require heuristic, but the Newton polytope approach doesn't!

Thanks for listening!

Homepage

Paper